1、三角形行列式的值,等于对角线元素的乘积。计算时,一般需要多次运算来把行列式转换为上三角型或下三角型。
2、交换行列式中的两行(列),行列式变号。
3、行列式中某行(列)的公因子,可以提出放到行列式之外。
4、行列式的某行乘以a,加到另外一行,行列式不变,常用于消去某些元素。
5、若行列式中,两行(列)完全一样,则行列式为0;可以推论,如果两行(列)成比例,行列式为0。
6、行列式展开:行列式的值,等于其中某一行(列)的每个元素与其代数余子式乘积的和;但若是另一行(列)的元素与本行(列)的代数余子式乘积求和,则其和为0。
7、在求解代数余子式相关问题时,可以对行列式进行值替代。
8、克拉默法则:利用线性方程组的系数行列式求解方程。
9、齐次线性方程组:在线性方程组等式右侧的常数项全部为0时,该方程组称为齐次线性方程组,否则为非齐次线性方程组。齐次线性方程组一定有零解,但不一定有非零解。当D=0时,有非零解;当D!=0时,方程组无非零解。
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
几何特征:
①上下底面是相似的平行多边形
②侧面是梯形
③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:
①底面是全等的圆;
②母线与轴平行;
③轴与底面圆的半径垂直;
④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:
①底面是一个圆;
②母线交于圆锥的顶点;
③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:
①上下底面是两个圆;
②侧面母线交于原圆锥的顶点;
③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:
①球的截面是圆;
②球面上任意一点到球心的距离等于半径。
1、利用平面直角坐标系解决直线与圆的位置关系;
2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论.
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
正在阅读:
高一数学必修二知识点笔记06-03
手工玩具作文400字05-13
废墟中的孩子作文500字09-03
托福口语的易错语法点介绍08-21
2020年学校党小组会议记录30篇_2020年学校党小组工作计划表样本10-14
读《成语故事》有感600字01-09
军事夏令营作文600字05-22
黑龙江2019年10月韩国语能力考试时间及考试内容【10月20日】04-06
一件有趣的事作文350字07-16
重庆北培多举措保障2022年度会计初级资格考试报名工作圆满完成01-27
不长大该多好作文500字11-21