高一数学必修一公式总结-高一数学必修三公式总结

时间:2024-08-24 23:48:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#高一# 导语】偶尔会抱怨为什么自己没天赋,又或者因为别人能轻易做到自己做不到的事而不平衡。从某种角度上来讲,这完全没办法。现在的我倒觉得这样也好,世上或许有人能一步登天,但那人不是我。自己一点一点抓住的东西,比什么都来得真实。用时间换天份,用坚持换机遇,我走得很慢,但我绝不回头。©文档大全网高一频道为大家整理了《高一数学必修三公式总结》供大家参考!

【篇一】

  1过两点有且只有一条直线

  2两点之间线段最短

  3同角或等角的补角相等

  4同角或等角的余角相等

  5过一点有且只有一条直线和已知直线垂直

  6直线外一点与直线上各点连接的所有线段中,垂线段最短

  7平行公理经过直线外一点,有且只有一条直线与这条直线平行

  8如果两条直线都和第三条直线平行,这两条直线也互相平行

  9同位角相等,两直线平行

  10内错角相等,两直线平行

  11同旁内角互补,两直线平行

  12两直线平行,同位角相等

  13两直线平行,内错角相等

  14两直线平行,同旁内角互补

  15定理三角形两边的和大于第三边

  16推论三角形两边的差小于第三边

  17三角形内角和定理三角形三个内角的和等于180°

  18推论1直角三角形的两个锐角互余

  19推论2三角形的一个外角等于和它不相邻的两个内角的和

  20推论3三角形的一个外角大于任何一个和它不相邻的内角

  21全等三角形的对应边、对应角相等

  22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  25边边边公理(SSS)有三边对应相等的两个三角形全等

  26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  27定理1在角的平分线上的点到这个角的两边的距离相等

  28定理2到一个角的两边的距离相同的点,在这个角的平分线上

  29角的平分线是到角的两边距离相等的所有点的集合

  30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  33推论3等边三角形的各角都相等,并且每一个角都等于60°

  34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35推论1三个角都相等的三角形是等边三角形

  36推论2有一个角等于60°的等腰三角形是等边三角形

  37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  38直角三角形斜边上的中线等于斜边上的一半

  39定理线段垂直平分线上的点和这条线段两个端点的距离相等

  

【篇二】

  乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b||a|+|b||a-b||a|+|b||a|b=-bab

  |a-b||a|-|b|-|a|a|a|

  一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a

  根与系数的关系x1+x2=-b/ax1*x2=c/a注:韦达定理

  判别式

  b2-4ac=0注:方程有两个相等的实根

  b2-4ac0注:方程有两个不等的实根

  b2-4ac0注:方程没有实根,有共轭复数根

  三角函数公式

  两角和公式

  sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

  cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

  tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

  ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

  倍角公式

  tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)

  cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)

  tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))

  ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))

  和差化积

  2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

  2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

  sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

  tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

  ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

  某些数列前n项和

  1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2

  2+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0

  抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

  直棱柱侧面积s=c*h斜棱柱侧面积s=c*h

  正棱锥侧面积s=1/2c*h正棱台侧面积s=1/2(c+c)h

  圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi*r2

  圆柱侧面积s=c*h=2pi*h圆锥侧面积s=1/2*c*l=pi*r*l

  弧长公式l=a*ra是圆心角的弧度数r0扇形面积公式s=1/2*l*r

  锥体体积公式v=1/3*s*h圆锥体体积公式v=1/3*pi*r2h

  斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长

  柱体体积公式v=s*h圆柱体v=pi*r2h

  

【篇三】

  内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

  复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

  指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

  函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数

  正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴

  求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

  奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

高一数学必修三公式总结.doc

本文来源:https://www.wddqw.com/wUtu.html