【#小学奥数# 导语】习题一方面有助于学生加深对数学知识的理解,形成良好的数感、科学的思维方式和合理的思维习惯,领悟一些重要的数学关系、规律和思想方法,培养初步的应用意识和创新能力;另一方面也有助于学生获得必要的技能,从而为后续学习和解决问题奠定基础、提供支持。以下是®文档大全网整理的相关资料,希望对您有所帮助。
【篇一】
【分析】不可能。因为25个奇数相加的和是奇数,25个偶数相加是偶数,奇数加偶数=奇数
有98个孩子,每人胸前有一个号码,号码从1到98各不相同。试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。
【分析】不可以。一名为98个数中有49个奇数,奇数加偶数等于奇数,奇数不是二的倍数。
有20个1升的容器,分别盛有1,2,3,…,20立方厘米水。允许由容器A向容器B倒进与B容器内相同的水(在A中的水不少于B中水的条件下)。问:在若干次倒水以后能否使其中11个容器中各有11立方厘米的水?
【分析】不可能,因为两个奇数相加等于偶数,两个偶数相加等于偶数,11是奇数,B是偶数,偶数不等于奇数。
一个俱乐部里的成员只有两种人:一种是老实人,永远说真话;一种是骗子,永远说假话。某天俱乐部的全体成员围坐成一圈,每个老实人两旁都是骗子,每个骗子两旁都是老实人。外来一位记者问俱乐部的成员张三:“俱乐部里共有多少成员?”张三答:“共有45人。”另一个成员李四说:“张三是老实人。”请判断李四是老实人还是骗子?
【分析】李四是骗子,老实人和说谎的人的人数相等,可是45是个奇数,所以张三是骗子。
【篇二】
【分析】不可以,因为不是白字多黑字一个,就是黑子多白字一个,不可能相等。
某市五年级99名同学参加数学竞赛,竞赛题共30道,评分标准是基础分15分,答对一道加5分,不答记1分,答错一道倒扣1分。问:所有参赛同学得分总和是奇数还是偶数?
【分析】奇数,5*30+15=165165-6N-4M=奇数减去偶数=奇数99*奇数=奇数。
有30枚2分硬币和8枚5分硬币,5角以内共有49种不同的币值,哪几种币值不能由上面38枚硬币组成?
解:当币值为偶数时,可以用若干枚2分硬币组成;
当币值为奇数时,除1分和3分这两种币值外,其余的都可以用1枚5分和若干枚2分硬币组成,所以5角以下的不同币值,只有1分和3分这两种币值不能由题目给出的硬币组成。
说明:将全体整数分为奇数与偶数两类,分而治之,逐一讨论,是解决整数问题的常用方法。
若偶数用2k表示,奇数用2k+1表示,则上述讨论可用数学式子更为直观地表示如下:
当币值为偶数时,2k说明可用若干枚2分硬币表示;
当币值为奇数时,
2k+1=2(k-2)+5,
其中k≥2。当k=0,1时,2k+1=1,3。1分和3分硬币不能由2分和5分硬币组成,而其他币值均可由2分和5分硬币组成。
【篇三】
解:一盏灯的开关被拉动奇数次后,将改变原来的状态,即亮的变成熄的,熄的变成亮的;而一盏灯的开关被拉动偶数次后,不改变原来的状态。由于
999=7×142+5,
因此,灯A,B,C,D,E各被拉动143次开关,灯F,G各被拉动142次开关。所以,当小华拉动999次后B,E,G亮,而A,C,D,F熄。
桌上放有77枚正面朝下的硬币,第1次翻动77枚,第2次翻动其中的76枚,第3次翻动其中的75枚……第77次翻动其中的1枚。按这样的方法翻动硬币,能否使桌上所有的77枚硬币都正面朝上?说明你的理由。
分析:对每一枚硬币来说,只要翻动奇数次,就可使原先朝下的一面朝上。这一事实,对我们解决这个问题起着关键性作用。
解:按规定的翻动,共翻动1+2+…+77=77×39次,平均每枚硬币翻动了39次,这是奇数。因此,对每一枚硬币来说,都可以使原先朝下的一面翻朝上。注意到
77×39=77+(76+1)+(75+2)+…+(39+38),
根据规定,可以设计如下的翻动方法:
第1次翻动77枚,可以将每枚硬币都翻动一次;第2次与第77次共翻动77枚,又可将每枚硬币都翻动一次;同理,第3次与第76次,第4次与第75次……第39次与第40次都可将每枚硬币各翻动一次。这样每枚硬币都翻动了39次,都由正面朝下变为正面朝上。
说明:(1)此题也可从简单情形入手(如9枚硬币的情形),按规定的翻法翻动硬币,从中获得启发。
(2)对有关正、反,开、关等实际问题通常可化为用奇偶数关系讨论。
甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
考点:奇偶性问题.
分析:因为李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.
解答:解;他每拿一次,甲盒子中的棋子数就减少一个,
180+181-1=360(次)
所以拿360次后,甲盒里只剩下一个棋子;
李平每次从甲盒子拿出的黑子数都是偶数,
由于181是奇数,奇数减偶数等于奇数,
则甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,
所以甲盒里剩下的一个棋子应该是黑子.
答:这个棋子是黑色.
点评:完成本题的关健是明确“李平每次从甲盒子拿出的黑子数都是偶数”,然后再据数的奇偶性进行解答就行了.
小学奥数数论上奇偶分析解析题.doc正在阅读:
小学奥数数论上奇偶分析解析题08-29
关于青春励志的英语格言名句摘抄10篇10-13
幼儿园大班亲子活动方案设计【5篇】02-17
2017年山东临床执业医师考试成绩查询入口:国家医学考试网02-25
斯文的哥哥作文200字11-21
2019年3月青海计算机三级成绩查询时间:预计5月10-31
2020年高考时间是几月几号-2020年高考时间会延期吗?12-21
广西招生考试院查分:2021年广西高考成绩查询时间及入口【6月23日】07-24
临床医生2016年个人工作总结07-24
2024年湖北恩施普通高考报名时间及流程(2023年11月8日-18日)10-25
初中春节日记300字怎么写01-18