【#教案# 导语】《数的世界》是北师大版五年级上册第一单元的内容,它是在学生已学过的数的基础上来研究学习的。®文档大全网准备了以下教案,希望对你有帮助!
篇一
今天在教学《数的世界》这一课时,我体会到教学过程要由浅入深,循序渐进,这里的“深、浅”是针对孩子而言的,什么对孩子来说是“浅”的呢?那就是孩子身边接触过的事物,或者孩子在以往的学习中获得的知识经验。 本节课教材首先创设了一个“水果店”的情境,从学生已有的生活经验出发,呈现了生活中的数有自然数、负数,也有小数,在比较中认识自然数和整数,使学生对数的认识进一步系统化。激发了学生主动学习与参与的兴趣,引导学生感悟到,生活中处处有数学,数学就在身边,从生活中学习数学。在教学中我在让孩子认识自然数和整数时,我考虑到孩子在学习小数的时候,已经对整数有一定的初步认识,所以我先介绍整数,再介绍孩子相对陌生的自然数。孩子因为熟悉整数,很快就进入了学习状态。还有在联系乘法认识倍数和因数时,也是让孩子先确定两个数之间的倍数关系,再确定因数关系。
篇二
《数的世界》是北师大版五年级第九册第一单元的内容,它是在学生已学过的数的基础上来研究学习的。学生已经知道学过的数有整数(负数)、小数、分数,而本节课探讨的是自然数和整数的关系、一个数的因数和倍数的关系,这里需要强调的是我们研究因数和倍数时,是把0除外的。通过学生独立思考、小组讨论、全班汇报,学生弄清了自然数和整数的关系,特别是班上的一位男生概括地很准确:所有的自然数都是整数,而所有的整数不一定都是自然数。有同学还提醒大家注意:0既是自然数,又是整数。看来,学生是真正参与到学习中来了,这个知识点是掌握了。
一个数的因数和倍数的关系,主要要求学生能针对具体的乘法算式说一说,谁是谁的因数?谁又是谁的倍数?而具体研究一个数的因数的个数是怎样?最小的因数是几?的因数是几?等问题是在后面专门学习,本课时只要学生知道因数和倍数的关系并自己能举实例说明。但还有一点,书中特别提到是在自然数(非零)范围内研究,学生在判断一道题时,把这个要求忽略了。即:2.1×3=6.3,6.3是3的倍数,3是6.3的因数。学生认为是对的,就是对研究的范围没有弄清,所以这是一个重点,要反复强调。
篇三
《数的世界》是一节数学概念课,即教学因数和倍数。在老教材中是先建立整除的概念,再在此基础上认识因数倍数;而现在是在未认识整除的情况下用乘法算式直接认识倍数和因数。数学中的“起始概念”一般比较难教,而这部分内容学生是初次接触,对于学生来说是比较难掌握的。根据本节课知识的特点和学生的认知规律,在教学中我注重体现以学生为主体的新理念,努力为学生的探究发现提供足够的空间。由于这是节概念课,因此有不少东西是由老师告知的,比如因数和倍数的概念。在认识了各类数之后,我创设有效了数学学习情境,让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式直接告知因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从具体到抽象,让学生自主体验数与形的结合,进而形成因数与倍数的意义,使学生初步建立了“因数与倍数”的概念。
为了突破本课的难点,我通过变式拓展,实践应用,促进了学生的智能内化。在理解因数和倍数中,我认为有两个关键性的问题是学生比较容易混淆的,第一就是因数和倍数的范围(非零自然数),我是这样处理的:通过一组算式让学生说谁的谁的因数,谁是谁的倍数,如3×5=15 6×8=48 9×4=36 12×5=60等,学生越说越顺口,越说越有劲,我突然抛出了1.5×6=9这个算式,结果有同学陷入了沉思(我认为这些同学感觉到了与刚刚的哪些算式有点不一样),但也有同学还是举手这样答道:1.5和6是9的因数,9是1.5和6的倍数,话一说完,就见那些沉思的同学有几个高高举起了手,迫不及待的说:我们说研究因数和倍数是在非零的自然数范围里,可这里的1.5不是自然数,所以不可以说1.5和6是9的因数,9是1.5和6的倍数。我就趁热打铁,组织学生进行热烈的讨论,同学们统一了认识,真正认识到了因数和倍数的范围,从而为理解概念打好了坚实的基础。而第二个关键性的问题我认为就是因数和倍数的相互依存的关系,我采取了几个递进的环节进行处理:一开始我就直接告知,让学生鹦鹉学舌。如通过学生写的3×4=12 这个算式,我就说,这时3和4是12的因数,12是3和4的倍数。通过一些类似的乘法算式让学生试着说,很快学生就有了第一感性认识;接着我用一个游戏让学生理解因数和倍数的相互依存,我举了三个数字卡片,分别是3、6和12,让学生很快说出谁是谁的因数,谁是谁的倍数?为什么?学生很快找到了3是6和 12 的因数,6也是12 的因数;6和12都是3的倍数。我追问:那我说,6是因数,12是倍数可以吗?通过这个例子,学生认识到6相对于12是因数,而相对于3却是倍数;而12 相对于6才是倍数,它相对于其他的数就说不定了,通过这个环节,学生很容易就理解了相互依存的含义,更好的理解了概念的内涵;最后我让同坐两人一组,一人说任意一个自然数,另一个同学则找出它是谁的因数,谁的倍数?并说出判断的依据。由于答案不,学生思考问题的空间很大,培养了学生的发散思维能力。
本节课,学生都沉浸在自己的角色体验中,享受到了数学思维的快乐,我想这才算是真正的“有效教学”。