2.平动的物体不一定能看成质点,转动的物体不一定不能看成质点。
3.参考系不一定是不动的,只是假定为不动的物体。
4.选择不同的参考系物体运动情况可能不同,但也可能相同。
5.在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。
6.忽视位移的矢量性,只强调大小而忽视方向。
7.物体做直线运动时,位移的大小不一定等于路程。
8.位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。
9.打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。
10.使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。
11.释放物体前,应使物体停在靠近打点计时器的位置。
12.使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。
13.“速度”一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明“速度”的含义。平常所说的“速度”多指瞬时速度,列式计算时常用的是平均速度和平均速率。
14.着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的“速度”就是现在所学的平均速率。
15.平均速度不是速度的平均。
16.平均速率不是平均速度的大小。
17.物体的速度大,其加速度不一定大。
18.物体的速度为零时,其加速度不一定为零。
19.物体的速度变化大,其加速度不一定大。
20.加速度的正、负仅表示方向,不表示大小。
21.物体的加速度为负值,物体不一定做减速运动。
22.物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。
23.物体的速度大小不变时,加速度不一定为零。
24.物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。
25.位移图象不是物体的运动轨迹。
26.解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。
27.图象是曲线的不表示物体做曲线运动。
1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。
2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。
3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。
4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。
瞬时速度(与位置时刻相对应)
瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。
速率≥速度
记录物体的运动信息
打点记时器:通过在纸带上打出一系列的点来记录物体运动信息的仪器。(电火花打点记时器——火花打点,电磁打点记时器——电磁打点);一般打出两个相邻的点的时间间隔是0.02s。
运动的特性:普遍性,永恒性,多样性
参考系
1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。
2.参考系的选取是自由的。
(1)比较两个物体的运动必须选用同一参考系。
(2)参照物不一定静止,但被认为是静止的。
质点
1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。
2.质点条件:
(1)物体中各点的运动情况完全相同(物体做平动)
(2)物体的大小(线度)<<它通过的距离
3.质点具有相对性,而不具有绝对性。
匀变速直线运动的位移图象
1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)
3.图象中两图线的交点表示两物体在这一时刻相遇。
匀变速直线运动的速度图象
1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)
2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。
1.速度:位移与发生这个位移所用时间的比值,是矢量,方向与Δx的方向相同.
2.瞬时速度与瞬时速率:瞬时速度指物体在某一时刻(或某一位置)的速度,方向沿轨迹的切线方向,其大小叫瞬时速率,前者是矢量,后者是标量.
3.平均速度与平均速率:在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度(v=),是矢量,方向与位移方向相同;而物体在某段时间内运动的路程与所用时间的比值叫平均速率,是标量.
说明:速度都是矢量,速率都是标量;速度描述物体运动的快慢及方向,而速率只能描述物体运动的快慢;瞬时速率就是瞬时速度的大小,但平均速率不一定等于平均速度的大小,只有在单方向直线运动中,平均速率才等于平均速度的大小,即位移大小等于路程时才相等.