初三上册数学二次函数知识点(5篇)

时间:2023-09-19 06:23:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

#初中三年级# #初三上册数学二次函数知识点(5篇)#】学得越多,懂得越多,想得越多,领悟得就越多,就像滴水一样,一滴水或许很快就会被太阳蒸发,但如果滴水不停的滴,就会变成一个水沟,越来越多,越来越多……本篇文章是®文档大全网为您整理的《初三上册数学二次函数知识点(5篇)》,供大家借鉴。



1.初三上册数学二次函数的定义 篇一


  一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数。

  注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

  (2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

  (3)当b=c=0时,二次函数y=ax2是最简单的二次函数;

  (4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数。

2.初三上册数学二次函数y=ax2+c的图象与性质 篇二


  (1)抛物线y=ax2+c的形状由a决定,位置由c决定。

  (2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴。

  当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大。

  当a<0时,图象的开口向下,有点(即顶点),当x=0时,y值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小。

  (3)抛物线y=ax2+c与y=ax2的关系。

  抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动。

3.初三上册数学二次函数的平移规律口诀 篇三


  上加下减,左加右减

  y=a(x+b)2+c,是将y=ax2的二次函数图像按以下规律平移

  (1)c>0时,图像向上平移c个单位(上加上)。

  (2)c<0时,图像向下平移c个单位(下减)。

  (3)b>0时,图像向左平移b个单位(左加)。

  (4)b<0时,图像向右平移b个单位(右减)。

4.初三上册数学二次函数与一元二次方程 篇四


  二次函数(以下称函数)y=ax2+bx+c。

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax2+bx+c=0。

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到。

  当h<0时,则向左平行移动|h|个单位得到。

  当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象。

  当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象。

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

  因此,研究抛物线y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。

  2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b2]/4a)。                     

  3.抛物线y=ax2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。                                          

  4.抛物线y=ax2+bx+c的图象与坐标轴的交点:                                          

  (1)图象与y轴一定相交,交点坐标为(0,c)。                                          

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁|。                                          

  当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。                     

  5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b2)/4a。

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。                     

5.初三上册数学用待定系数法求二次函数的解析式 篇五


  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0)。                                           

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a≠0)。

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0)。

本文来源:https://www.wddqw.com/OLHv.html