[中考数学二次函数专题]2017中考数学二次函数解题方法(4)

副标题:2017中考数学二次函数解题方法(4)

时间:2023-11-05 18:24:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:
  这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。
  进一步有:
  ①若是否存在这样的动点构成矩形呢?先让动点构成平行四边形,再验证两条对角线相等否?若相等,则所求动点能构成矩形,否则这样的动点不存在。
  ②若是否存在这样的动点构成棱形呢?先让动点构成平行四边形,再验证任意一组邻边相等否?若相等,则所求动点能构成棱形,否则这样的动点不存在。
  ③若是否存在这样的动点构成正方形呢?先让动点构成平行四边形,再验证任意一组邻边是否相等?和两条对角线是否相等?若都相等,则所求动点能构成正方形,否则这样的动点不存在。
  2.“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:(此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形。)
  先用动点坐标“一母示”的方法设出直接动点坐标,分别表示(如果图形是动图形就只能表示出其面积)或计算(如果图形是定图形就计算出它的具体面积),然后由题意建立两个图形面积关系的一个方程,解之即可。(注意去掉不合题意的点),如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可。
  3.“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:
  若夹直角的两边与y轴都不平行:先设出动点坐标(一母示),视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线(没有与y轴平行的直线)垂直的斜率结论(两直线的斜率相乘等于-1),得到一个方程,解之即可。
  若夹直角的两边中有一边与y轴平行,此时不能使用斜率公式。补救措施是:过余下的那一个点(没在平行于y轴的那条直线上的点)直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定。
  4.“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题。
  ①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式(如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程),利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否?若等,该交点合题,反之不合题,舍去。
  ②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1?若为-1,则就说明所求交点合题;反之,舍去。
  5.“题中含有两角相等,求相关点的坐标或线段长度”等的问题:
  题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口。

2017中考数学二次函数解题方法(4).doc

本文来源:https://www.wddqw.com/YaiO.html