六年级数学日记手抄报资料

时间:2022-03-21 00:53:46 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
六年级数学日记手抄报资料



一、数学日记

今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较

1111/11111111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子

分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀

,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有81,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111。 二、趣味数学小故事

小熊不喜欢学习,只想做生意,于是在学校旁边开了个水果店。小兔和小猴是它的同学,它们商量好,要教训这个不爱上学的懒家伙。 它们来到小熊的水果店。 “桃子怎么卖呀?”小猴问。

“第一筐里63公斤,第二筐里62公斤。”小熊回答。


小猴又说:“如果我从两筐里拿5公斤,要付你12元,对吗?” 小熊点点头。

“那我全买下,既然5公斤12元,那60公斤就是12×12=144元,对不对?” “正是,正是。”小熊讲。

于是小猴买了所有的桃子,付了钱,和小兔高兴地走了。

晚上回到家,小熊结帐,怎么算都是亏本的。第二天,小猴、小兔找到小熊把情况说了,笑着说:“都是你学习不好,我们才来教训你一下”,并把少给的钱补给了小熊。 小熊惭愧地低下了头,从此每天上课都很认真。它们三个成了好朋友。 三、数学谜语

1 走遍天下都不怕。猜一数学名词 有理数

2 大甩卖:新鲜苹果一角一斤。猜一数学名词 绝对值 3 夏周之间猜一数学名词 4 考试作弊猜一数学名词 假分数 5 插去三角形的一边猜一数学名词 余角 6 垂钓 猜一数学符号 等于鱼 7 待命冲锋打一数学名词 等号 8 虚心猜一数字 9 其中猜一数字 10 一来就千猜一数字 灵感与数学灵感

我国著名科学家钱学森说:“灵感,也就是人在科学艺术创作中的高潮,突然出现的、瞬时即逝的短暂思维过程.”唯物论者也承认灵感,但它不是上帝的恩赐,而是人们在实践活动中逐步形成或培养出来的一种不同常人的高效率、大跨度创造性思维的表现.灵感是紧张的创造性活动和长期艰苦劳动的结果.

数学灵感是人脑对数学对象结构关系的一种突发性的领悟.在解答数学难题时,通常会遇到这样的情况:尽管从多角度、用各种方法去进行探索,但百思不得其解.可正在“山穷水尽疑无路”之际,灵感出现了,从而创造了“柳暗花明又一村”的美的境界.


灵感与创造思维、灵感与数学发现究竟有何联系?我们可看看下面几位数学家的数学灵感与数学发现的情况.

法国数学家笛卡儿,早就有把相互独立的代数与几何结合起来的愿望,经过长时期的思考,但未找到合适的方法.1619年随军服务时他仍在思考.119日,在多瑙河畔的诺伊堡,他几天来整日沉迷在思考之中而不得其解,入睡后连作数梦,梦中迷迷糊糊地想到引入直角坐标系的方法.第二天,也即是1110日清晨,醒后立即将梦中所得加以整理,终于创造了解析几何学,笛卡尔获得了成功,但他酝酿时间为16171619年,约为两年的时间.

法国著名数学家庞加莱在谈到他发现富克斯函数的变换方法时回忆说:“1880年有一次我离开当时居住的卡昂去作一次由矿业学校主办的地质考察旅行.旅途的奔波使我忘掉了我的数学工作,抵达库特塞斯后,我们乘公共马车到各处去转转,正当我跨上踏板的瞬间,脑子里突然出现了一个想法,即我曾用来定义富克斯函数的诸变换跟非欧几何中的诸变换是一致的.”庞加莱回到住址后,马上把这一结果加以证明.这是在长时间紧张工作之后,思想放松时灵感的突然闪现,是经过了约一年时间的苦思之后才获得成功的. 被称为数学王子的高斯为证明某一算术定理,曾苦思冥想达两年之久,后来突然得到一个想法,使他获得成功.高斯回忆说:“终于在两天前我成功了……像闪电一样,谜一下解开了.我自己也说不清楚是什么导线把原先的知识和我成功的东西连接起来.”尽管解开这个谜的想法是突然来的,但高斯本人经过两年的艰苦努力才为这个成功的到来做好了准备.

由以上对三位数学数学灵感的出现而导致数学发现的描述,可以看出这种在长时期持续劳动后的某时刻出现的“突然领悟”是一种非逻辑的高层次的创造活动,亦即灵感思维活动.

灵感是不能靠偶然的机遇、守株待兔式的消极等待可以得到的.必须是执著追求、锲而不舍、百折不挠,才能有成功的一天.所谓“触景生情”“灵机一动”“眉头一皱,计上心来”,都是经过长期坚持不懈地创造性劳动而“偶然得之”的.巴斯加说:“机遇只偏爱有准备的头脑.”恰恰道出了此中的真谛.

您的阅读,祝您生活愉快。


本文来源:https://www.wddqw.com/doc/012b1b71c57da26925c52cc58bd63186bdeb92ea.html