高中数学数列教学反思

时间:2022-07-11 05:02:21 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。


高中数学数列教学反思

.4 数学方法

数列这一章蕴含着多种数学思想及方法,如函数思想、方程思想,而且在基本概念、公式的教学本身也包含着丰富的数学方法,掌握这些思想方法不仅可以增进对数列概念、公式的理解,而且运用数学思想方法解决问题的过程,往往能诱发知识的迁移,使学生产生举一反三、融会贯通的解决多数列问题。在这一章主要用到了以下几中数学方法: 1不完全归纳法 不完全归纳法不但可以培养学生的数学直观,而且可以帮助学生有效的解决问题,在等差数列以及等比数列通项公式推导的过程就用到了不完全归纳法。

2倒叙相加法 等差数列前n项和公式的推导过程中,就根据等差数列的特点,很好的应用了倒叙相加法,而且在这一章的很多问题都直接或间接地用到了这种方法。 3错位相减法 错位相减法是另一类数列求和的方法,它主要应用于求和的项之间通过一定的变形可以相互转化,并且是多个数求和的问题。等比数列的前 n 项和公式的推导就用到了这种思想方法。

4函数的思想方法 数列本身就是一个特殊的函数,而且是离散的函数,因此在解题过程中,尤其在遇到等差数列与等比数列这两类特殊的数列时,可以将它们看成一个函数,进而运用函数的性质和特点来解决问题。

5方程的思想方法 数列这一章涉及了多个关于首项、末项、项数、公差、公比、 n 和前 n 项和这些量的数学公式,而公式本身就是一个等式,因此,在求这些数学量的过程中,可将它们看成相应的已知量和未知数,通过公式建立关于求未知量的方程,可以使解题变得清晰、明了,而且简化了解题过程。


本文来源:https://www.wddqw.com/doc/0d55d79f2a4ac850ad02de80d4d8d15abe230080.html