第二单元《线与角》 1、 直线:可以向两端无限延伸;没有端点。读作 :直线AB或直线BA。 线段:不能向两端无限延伸;有两个端点。读作:线段AB或线段BA。 射线:可以向一端无限延伸;有一个端点。读作:射线AB(只有一种读法,从端点读起。) 2、画直线。 过一点可画无数条直线;过两点能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。 3、直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。 4、在同一平面内,永不相交的两条直线叫做平行线 5、平行线的画法。 (1)固定三角尺,沿一条直角边先画一条直线。 (2)用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺。 (3)沿一条直角边在画出另一条直线。 6、当两条直线相交成直角时,这两条直线互相垂直。这两条直线的交点叫做垂足。(两条直线互相垂直说明了这两条直线的位置关系:必须相交,相交还要成直角。) 7、 画垂线: (1)过直线上一点画垂线的方法。 把三角尺的一条直角边与这条直线重合,直角顶点是垂足,沿着另一条直角边画直线,这条直线是前一条直线的垂线。注意,要让三角尺的直角顶点与给定的点重合。 (2)过直线外一点画垂线的方法。 把三角尺的一条直角边与这条直线重合,让三角尺的另一条直角边通过这个已知点,沿着三角尺的另一条直角边画直线,这条直线就是前一条直线的垂线。注意,画图时一般左手持三角尺,右手画线。过直线外一点画一条直线的垂线,三角尺的另一条直角边必须通过给定的这个点。 8、由一点引出两条射线所组成的图形叫做角。角是由一个顶点和两条边组成的。 9、认识平角、周角。 平角 :角的两边在同一直线上,(像一条直线),平角等于180°(读作180度),等于两个直角。 周角:角的两边重合,(像一条射线),周角等于360°(读作360度),等于两个平角,四个直角。 10、角的分类:小于90度的角叫做锐角;等于90度的角叫做直角;大于90度小于180度的角叫做钝角;等于180度的角叫做平角;大于180度小于270度叫做优角(此为补充内容);等于360度的角叫做周角。 11、将圆平均分成360份,把其中的1份所对的角叫做1度,记作1°,通常用1°作为度量角的单位。 12、认识量角器。量角器是把半圆平均分成180份,一份表示1度。量角器上有中心点、0刻度线、内刻度线、外刻度线。 量角器的使用方法。“两合一看”,“两合”是指中心点与角的顶点重合;0刻度线与角的一边重合。“一看”就是要看角的另一边所对的量角器的刻度。 13、用量角器画指定度数的角的方法。 画一条射线,中心点对准射线的端点,0刻度线对准射线(两合),对准量角器相应的刻度点一个点(一看),把点和射线端点连接,然后标出角的度数。 第三单元《乘法》 1、两位数乘法,先用一个乘数个位上的数去乘另一个乘数,得数的末尾和个位对齐;再用这个乘数十位上的数去乘另一个乘数,得数的末尾和十位对齐,最后把两次乘得的积加起来。 例1: 234×15= 例2: 350×24= 2、估算。先把两个因数用四舍五入法求出近似数(接近整十整百的数),再求出两个近似数的积,这个积就是要估算的积。 例3: 297×34= 3、乘法结合律是乘法运算的一种运算定律。三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。 注意,结合律同样适用于加法。例如: 字母(公式)表示: a×b×c = a×(b×c) 117+25+75 例4: 11×25×4 = 117+(25+75) =11×(25×4) = 117+100 =11× 100 = 217 =1100 4、乘法交换律是乘法运算的一种运算定律。在两个数的乘法运算中,在从左往右计算的顺序,两个因数相乘,交换因数的位置,积不变。 注意,交换律同样适用于加法。例如: 字母(公式)表示: a×b = b×a 117+25+83 例5: 125×15×8 = 117+83+25 =125×8×15 = 200+25 =1000× 15 = 225 =15000 5、乘法分配律是乘法运算的一种运算定律。两个数的和(或差)与一个数相乘,等于把两个数分别同这个数相乘,再把两个积相加(或相减)。 用字母(公式)表示: (a+b)× c=a×c+b×c 或: a×(b-c)=a×b-a×c 115×34-15×34 例6: 67×15+33×15 例7: = (115-15)×34 = (67+33)×15 = 100×34 = 100×15 = 3400 = 1500 6、灵活运用这三种乘法运算定律可以使乘法计算变得简便。 本文来源:https://www.wddqw.com/doc/0d7d8a0bba1aa8114431d9b5.html