傅里叶变换、拉氏变换、z变换的含义到底是什么?

时间:2023-02-09 07:01:16 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
1。关于傅里叶变换变换?(来自百度知道)

答:fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,fourier变换此时可看成仅在轴)z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT ——参考郑君里的

《信号与系统》。

傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。但浙大校训求是时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》

会有所帮助。

(另一种说法)对于周期函数f,傅立叶变换就是把这个函数分解成很多个正弦函数fn的和,每个fn的频

率是fn倍。所谓二次谐波,就是函数f2的频率为f两倍的那个函数。

(另二种说法)周期信号的傅里叶级数的意义是信号在每一个离散频率分量处的幅度;非周期信号的傅里叶变换可以理解为周期无穷大的周期信号的傅里叶级数。这时,离散的频率逐渐变成了连续的频率,某一点频率处的频谱密度值是没有意义的,如同概率密度函数,你只有求那一点附近一小段频率内与频谱密度函数形成的面积值才有意义,才表示了信号在那一频率点的幅度。具体参考《信号与系统》郑君里版 清华

大学出版社 P91,P111

2 什么是Laplace变换?(解答来自百度)

答:

(第1种说法)拉氏变换的作用:(1)求解方程得到简化。且初始条件自动包含在变换式里。 2)拉氏变换将微分变换成乘法积分变换成除法。即将微分方程变成代数方程。 拉氏变换将时域中卷积

运算变换成乘法运算。 (3)利用系统函数零点、极点分布分析系统的规律。

在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。 现在给你举个

例子:

我们学控制的时候,比如一个二阶电路RLC系统微分方程是:LC*Uc'' + RC*Uc' + Uc = U设想你借这个微分方程多费劲,那么你用laplace变换,微分方程变为LC*s^2*Uc + RCs*Uc + Uc = U 然后Uc = U/ (LCs^2

+ RCs + 1)


然后可以查表直接得出结果(就跟查积分表一样方便),这不比你解微分方程,强多了么!

(第2种说法)拉普拉斯变换提供了一种变换定义域的方法,把定义在时域上的信号(函数)映射到复频域上(要理解这句话,需要了解一下函数空间的概念--我们知道,函数定义了一种从一个集合的元素到另一个集合的元素的关系,而两个或以上的函数组合成的集合,就是函数空间,即函数空间也是一个集合;拉普拉斯变换的定义域,就是函数空间,可以说,拉普拉斯变换就是一种处理函数的函数。由于拉普拉斯变换定义得相当巧妙,所以它就具有一些奇特的特质),而且,这是一种一一对应的关系(只要给定复频域的收敛域)故只要给定一个时域函数(信号)它就能通过拉普拉斯变换变换到一个复频域信号(不管这个信号是实信号还是复信号),因而,只要我们对这个复频域信号进行处理,也就相当于对时域信号进行处理(例如设f(t)←→F(s),Re[s]>a,则若我们对F(s)进行时延处理,得到信号F(s-z)Re[s]>a+Re[z],那么就相当于我们给时域函数乘以一个旋转因子e^ztf(t)e^zt←→F(s-z),Re[s]>a+Re[z]只要对F(s-z)

进行反变换,就可以得到f(t)e^zt)。

拉普拉斯变换被用于求解微分方程,主要是应用拉普拉斯变换的几个性质,使求解微分方程转变为求解代数方程(因为求解代数方程总比求解微分方程容易得多!而且,(可以很方便地)对求解结果进行拉普拉

斯反变换从而得到原微分方程的解)。

我们总可以容易地画出实变函数的图像(绝大多数函数的确如此)但我们难以画出一个复变函数的图象,这也许是拉普拉斯变换比较抽象的原因之一;而另外一个原因,就是拉普拉斯变换中的复频率s没有明确

物理意义。关于特征根和复数,建议提问者再去看看书中的定义,应该不难理解。

3 什么是z变换?

在离散系统分析中为简化运算而建立的对函数序列的数学变换,其作用与拉普拉斯变换在连续系统分析中的作用很相似。Z变换对求解线性差分方程是一种简单而有效的方法。在采样控制理论中,Z变换是主要的数学工具。Z变换还在时间序列分析、 数据平滑、数字滤波等领域有广泛的应用。当一个连续信号x(t)过每隔T秒钟闭合一次的采样开关时,就得到一个函数序列 x(kT)(k0,1,2,…)。函数序列x(kT) 0T

2T时刻上具有与连续信号x(t)相同的函数值,而在所有其他时刻上均恒为零。


本文来源:https://www.wddqw.com/doc/331e44c2ff4733687e21af45b307e87101f6f8de.html