初二数学分式手抄报

时间:2022-05-29 04:24:19 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
初二数学分式手抄报

资料1 分式的通分

①分式的通分:根据分式的基本性质,把几个异分母的分式分别化成同分母分式(分式值不变)。

②分式的通分最主要的步骤是最简公分母的确定。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

确定最简公分母的一般步骤: Ⅰ取各分母系数的最小公倍数;

Ⅱ单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; Ⅲ相同字母(或含有字母的式子)的幂的因式取指数最大的。 Ⅳ保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。 注意:分式的分母为多项式时,一般应先因式分解。 分式的约分

定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。

注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。 设计图 资料2

分式方程意义与解法 分式方程的意义


分母中含有未知数的方程叫做分式方程。 分式方程的解法

①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号}

②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项, 系数化为1)求出未知数的值;

③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

一般地验根,只需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。 如果分式本身约分了,也要代进去检验。

您的阅读,祝您生活愉快。


本文来源:https://www.wddqw.com/doc/4384434f00d276a20029bd64783e0912a3167cd4.html