从光的干涉现象谈光的本质论文

时间:2023-03-10 10:29:37 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
理学论文《从光的干涉现象谈光的本性》

理学论文《从光的干涉现象谈光的本性》

作者:佚名 文章来源:不详 点击数:



43 更新时间:2006-7-28



假设有一个光源S1,在S1前放置一块屏幕,从S1发出的光(光子)会将整个屏幕均匀的照亮。我们知道,屏幕的亮度是与落在屏幕上面的光子数的多少有关的。严格地说,屏幕的亮度是以垂直于屏幕的光线与屏幕的交点为中心向四周逐渐变暗的。但这种变化决不是几率问题。证明如下:把S1放在一个半径R1的球的中心,假设S1在单位时间里发射出N个光子,则单位球面积上所接受的光子数等于光子数N除以球的总面积4πR12,如果把球的半径由R1变为R2R2R1),则在单位球面积上所接受的光子数就变为N除以4πR22由于R2大于R1所以半径为R1的球在单位球面积上接受的光子数大于R2单位面积上的光子数。这就是为什么屏幕上的亮度是由明到暗逐渐变化的原因。当屏幕距光源的距离很大且屏幕的面积又很小时,就可以近似的认为屏幕上的光子是均匀分布的。

现在把另一个相干光源S2放在靠近S1的地方,情况有了变化。在垂直两个光源的平面上出现了明暗相间的圆环,而在平行两个光源的平面上,则出现了明暗相间的条纹见图一,这就是人们所说的光的干涉条纹。因为干涉现象是波动的最主要特征,所以这也就成了光具有波动性的最有力证据之一。我们知道机械波是振动在媒质中的传播,当有两列相干波源存在时,媒质中任意一点的振动是两列波各自到达这一点时波的叠加。当到达这一点的两列波的相位相同时,则在这一点上的振幅最大,如果两列波的相位相差1800时,则振动的振幅相互抵消,这样就形成了有规则的干涉条纹。经典光学正是套用机械波的方法证明光的干涉条纹的,而传播光的媒质以太已被证明是根本不存在的,这样用机械波的方法证明光的干涉条纹也就显得比较牵强。量子力学在解释干涉条纹时则采用的是几率波的方法,认为亮的地方是光子出现几率多的地方,暗的地方则是光子出现几率少的地方。问题是当只有一个光源时,光子是均匀分布在屏幕上的,而当存在另一个相干光源时,按照量子理论光子就会集中出现在一些地方而不去另一些地方,几率的解释是不能使人心悦诚服地接受的。爱因斯坦曾用上帝不掷骰子来表达他对用几率描述单个粒子行为的厌恶。这就是目前对于光的干涉现象的两种正统解释方法。我们对于光本性的认识是否还存在其它我们没有考虑到的因素,是否还存在其它的证明方法来统一光的波粒二象性即用一种理论解释来解释波动性和粒子性呢?

为了找到这种新的理论,在此我们不得不在现有光量子理论基础上进行一些必要的修正即单个光量子的能量是变化的,光子的能量和质量是相互转化的,转化的频率就是光的频率。频率快光子的能量大质量小,相反,频率慢则光子的能量小质量大,这样光子在空间所走的路程就形成了一条类波的轨迹。在论证光的干涉现象之前,我们先对光源进行定义。单频率点光源---频率单一且所有光子在离开光源时的状态(相位)都相同。单频率点光源具有这样两个特点,其一在距光源某一点的空间位置上,光子的状态不随时间变化。其二光子的状态随距点光源的距离作周期变化。光的波长指的是光子在一个周期的时间内在空间运行的距离。

我们在x轴上设置两个点光源S1S2,如图一所示。令P为垂直平面上的一点,从P点到S1S2


光程差PS1-PS2为波长的某个正数倍ml m=±123)。从S1S2出发的两列光子,将同相地达到P点,状态相同。再令Q为垂直平面上的另一点,从QS1S2的光程差也为ml。过PQ做一条曲线,使得这曲线上所有过XO的垂直平面内的点的轨迹都具有这样的性质,即这条曲线上任意一点到S1S2的距离之差为常数,根据解析几何我们知道,这曲线是一条双曲线。如果我们设想这一双曲线以直线XO为轴旋转,则它将扫出一个曲面,叫做双曲面。我们看到,在这曲面上的任意一点,来自S1S2的光子始终都是同相位的(相位差保持不变),光子在曲面上的每一点的状态是一定的,沿曲面上的点的状态是周期变化的。由于光的波长很短,光子沿曲面的这种周期变化是不容易被观测到。

同理,我们令T为垂直平面上的另一点(图中未画出),从T点到S1S2的光程差TS1-TS2为波长的l/2×2m+1)倍(m=±123)。从S1S2出发的两列光子,将以1800的相位差达到T点。再V为垂直平面上的另一点(图中未画出),从VS1S2的光程差也为道长l/2×2m+1)倍。过TV做一条曲线使这曲线上任一点到两定点S1S2的距离之差为常数,这曲线也是一条双曲线,以XO为轴旋转同样将扫出一双曲面。所不同的是来自S1S2的光子到达这曲面上的任意一点的相位差始终为1800,叠加后的最终状态是一个恒定的值。

图一是在S1S2的距离为3lP点的光程差为PS1-PS2=2lm=2)这一简单情况下画出的。m=1的那条双曲线是垂直平面内光程差为l的那些点的轨迹。光程差为零(m=0)的各点的轨迹是过S1S2中点的一条直线。由它绕XO旋转而成的将是一个平面。图中还画出m= -1m= -2的双曲线。在这种情况下,这五条曲线绕XO旋转而产生五个曲面,这五个曲面将S1S2两光源所形成的能量场分成了6个左右对称的无限延伸的能量空间。屏幕上亮线将出现在屏幕与诸双曲面相交的那些曲线的任何所在位置上。 如果两点光源间的距离是许多个波长,则将存在许多曲面,在这些曲面上各光子相互加强。因而在平行于两光源连线的屏幕上,将形成许多明暗相间的双曲线(几乎是直线)干涉条纹。而在垂直于两光源连线的屏幕上将形成许多明暗相间的圆形干涉条纹。两条相邻的明条纹之间的关系是光程差相差一个l条纹与相邻明条纹之间相差l/2。干涉条纹从明到暗再到明之间的相位变化是从同相到相差1800相位再到同相。

为了检验以上的设想是否正确,这里我结合光的干涉实验和光电效应实验设计了一个简单实验。第一步用光干涉仪产生明暗相间的干涉条纹。第二步将光电管依次放在从明到暗条纹的不同位置上,当然采用的单色光源频率要在临阈频率之上,观察产生光电子动能的大小。如果按照现有光量子理论,光电子的动能应该是不变的,原因是光子的能量只与光的频率有关而与光的亮度无关,干涉后光的频率并没有变化,所以在从明到暗的条纹上,测得的光电子的动能应该是不变的。再从量子理论的观点来分析,明亮的地方光子出现的几率大,暗的地方光子出现的几率小,明暗只是单位面积上光子数不同而已,光子的动能并没有改变,所以结论也是光电子的动能不变。而我的结论则是在从明到暗的干涉条纹上光子数是一样的,产生的光电子的动能是从大到小连续变化的。

如果实验的结果与我所做的推论一致,我们不妨把这一结论推广到一切实物粒子,因为实物粒子也具有波粒二象性,即一切实物粒子自身的能量与质量之间始终处在不停地相互变化中,这也正是量子力学波函数所要描述的微观世界粒子的客观实在图像。




本文来源:https://www.wddqw.com/doc/56d2f823192e45361066f5f2.html