研究论文参考文献
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
煤矿水害多源信息预测技术研究报告 主要参考文献 [1] 张大顺,郑世书,孙亚军,季景贤.地理信息系统技术及其在煤矿水害预测中的应用[M]. 徐州:中国矿业大学出版社. 1994. [2] 武强,徐建芳,董东林等.基于GIS的地质灾害和水资源研究理论与方法[M]. 北京:地质出版社. 2000. [3] Q.Chen.et al. Seismic attribute technology for reservoir forecasting and monitoring[J]. The leading Edge. 1997, 16(5). [4] R.J.Michelena.et al. Similarity analysis: A new tool to summarize attribute information[J]. The leading Edge. 1998, 17(4). [5] 刘企英.利用地震信息进行油气预测[M]. 北京:石油工业出版社.1994. [6] 朱广生.地震资料储层预测方法[M]. 北京:石油工业出版社.1995. [7] 陈遵德.储层地震属性优化方法[M]. 北京:石油工业出版社. 1998. [8] 张永刚. 地震波阻抗反演技术的现状和发展[J]. 石油物探. 2002, 41(4), 385-390. [9] 姚逢昌,甘利灯. 地震反演的应用与限制[J]. 石油勘探与开发. 2000, 27(2). [10] 王延光. 储层地震反演方法以及应用中的关键问题对策[J]. 石油物探. 2002, 41(3), 299-303. [11] 高少武,蔡加铭,赵波,范祯祥. 地震和测井联合反演储层波阻抗技术[J]. 石油物探. 2002, 41(3), 279-283. [12] 沈财余,江洁,赵华,李九生. 测井约束地震反演解决地质问题能力的探讨[J]. 石油地球物理勘探. 2002, 37(4). [13] Gislain B.Madiba and George A.McMechan. Seismic impedance inversion and interpretation of a gas carbonate reservoir in the Alberta Foothills, Western Canada[J]. Geophysics. 2003, 68(5), 1460-1469. [14] Yanghua Wang. Sparseness-constrained least-squares inversion: Application to seismic wave reconstruction[J]. Geophysics. 2003, 68(5), 1633-1638. [15] Adam P. Koesoemadinata and George A.McMechan. Petro-seismic inversion for sandstone properties[J]. Geophysics. 2003, 68(5), 1611-1625. [16] P.S. Schultz, S. Ronen, M. Hattori etc. Seismic guided estimation of log propties,Parts1, 2 and 3[J]. The Leading Edge. 1994, 13(5-7), 305-776. 79 煤矿水害多源信息预测技术研究报告 [17] D.P. Hampson, J. Schuelke, J. Quirein. Using multi-attribute transforms to predict log properties from seismic data[J]. Geophysics. 2001, 66(1), 220-231. [18] Baldwin,J.T.et al. Application of a neural network to the problem of mineral identification from well logs[J]. The Log Analyst. 1990, 31(5), 279-293. [19] Raiche,A.A pattern recognition approach to geophysical inversion using neural nets[J]. Geophysical Journal International. 1991, 105, 629-648. [20] Osborne,D.A. Neural network provide more accurate reservoir permibility[J]. Oil & Gas Journal. 1992, 90(39), 80-83. [21] Rogers,S.J.et al. Determination of lithology from well logs using a neural network[J]. AAPG Bulletin. 1992, 76(5), 731-739. [22] Cui Ruofei. Application of seismic data interpretation in coal fields using artificial neural network[D]. CPS/SEG/EAGE北京'98国际地球物理研讨会. 1998. [23] Specht, Donald. Probabilistic neural networks [J]. Neural Networks. 1990, 3(1), 109-118. [24] T. Masters. Signal and image processing with neural networks[M]. John Wiley & Sons Inc., 1994. [25] C.T. Kalkomey. Potential risks when using seismic attributes as predictors of reservoir properties[J]. The Leading Edge. 1997, 16(9), 247-251. [26] N.R. Draper, H. Smith. Applied regression analysis[M]. John Wiley &S ons Inc., 1966. 80 本文来源:https://www.wddqw.com/doc/5c99a31e02768e9950e73807.html