(完整版)七年级下册数学压轴题
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
人教版2018年 七年级数学 期末复习专题--压轴题培优 1.已知AM∥CN,点B为平面内一点,AB⊥BC于B. (1)如图1,直接写出∠A和∠C之间的数量关系 ; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C; (3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数. 2.如图,已知两条射线OM∥CN,动线段AB的两个端点A.B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF. (1)请在图中找出与∠AOC相等的角,并说明理由; (2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值; (3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由. 第 1 页 共 16 页 3.已知AB∥CD,线段EF分别与AB、CD相交于点E、F. (1)如图①,当∠A=25°,∠APC=70°时,求∠C的度数; (2)如图②,当点P在线段EF上运动时(不包括E、F两点),∠A.∠APC与∠C之间有什么确定的相等关系?试证明你的结论. (3)如图③,当点P在线段FE的延长线上运动时,(2)中的结论还成立吗?如果成立,说明理由;如果不成立,试探究它们之间新的相等关系并证明. 4.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a-3)2+|b+4|=0,S四边形AOBC=16. (1)求C点坐标; (2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数. (3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由. 第 2 页 共 16 页 5.已知BC∥OA,∠B=∠A=100°.试回答下列问题: (1)如图1所示,求证:OB∥AC; (2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数; (3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值。 06.如图,已知AM//BN,∠A=60.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D. (1)①∠ABN的度数是 ;②∵AM //BN,∴∠ACB=∠ ; (2)求∠CBD的度数; (3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (4)当点P运动到使∠ACB=∠APD时,∠ABC的度数是 . 第 3 页 共 16 页 7.课题学习:平行线的“等角转化”功能.阅读理解: 如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数. (1)阅读并补充下面推理过程. 解:过点A作ED∥BC,所以∠B= ,∠C= . 又因为∠EAB+∠BAC+∠DAC=180°. 所以∠B+∠BAC+∠C=180°. 解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决. 方法运用: (2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数. 深化拓展: (3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间. 请从下面的A,B两题中任选一题解答,我选择 题. A.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为 °. B.如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED度数为 °.(用含n的代数式表示) 第 4 页 共 16 页 8.已知A(0,a),B(b,0),a、b满足. (1)求a、b的值; (2)在坐标轴上找一点D,使三角形ABD的面积等于三角形OAB面积的一半,求D点坐标; (3)做∠BAO平分线与∠AOC平分线BE的反向延长线交于P点,求∠P的度数. 29.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)+b-2=0,过C作CB⊥x轴于B. (1)求△ABC的面积. (2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数. (3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由. 第 5 页 共 16 页 10.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b2满足关系式:|a+3|+(b-a+1)=0. (1)a= ,b= ,△BCD的面积为 ; (2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC; (3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,的值是否变化?若不变,求出其值;若变化,请说明理由. 211.如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)+|a-b+6|=0,线段AB交y轴于F点. (1)求点A.B的坐标. (2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图2, 求∠AMD的度数. (3)如图3,(也可以利用图1) ①求点F的坐标; ②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等?若存在,求出P点坐标. 第 6 页 共 16 页 12.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2). (1)直接写出点E的坐标 ; (2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题: ①当t= 秒时,点P的横坐标与纵坐标互为相反数; ②求点P在运动过程中的坐标,(用含t的式子表示,写出过程); ③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由. 13.如图,已知平面直角坐标系内A (2a-1,4) , B (-3,3b+1),A.B;两点关于y轴对称. (1)求A.B的坐标; (2)动点P、Q分别从A点、B点同时出发,沿直线AB向右运动,同向而行,点的速度是每秒2个单位长度,Q点的速度是每秒4个单位长度,设P、Q的运时间为t秒,用含t的代数式表示三角形OPQ的面积S,并写出t的取值范围; (3)在平面直角坐标系中存在一点M,点M的横纵坐标相等,且满足S△PQM:S△OPQ=3:2,求出点M的坐标,并求出当S△AQM=15时,三角形OPQ的面积. 第 7 页 共 16 页 14.如图,在平面直角坐标系中,O为原点,点A(0,8),点B(m,0),且m>0.把△AOB绕点A逆时针旋转90°,得△ACD,点O,B旋转后的对应点为C,D. (1)点C的坐标为 ; (2)①设△BCD的面积为S,用含m的式子表示S,并写出m的取值范围; ②当S=6时,求点B的坐标(直接写出结果即可). 15.如图,已知在平面直角坐标系中,△ABO的面积为8, OA=OB, BC=12,点P的坐标是(a, 6). (1)求△ABC三个顶点A, B, C的坐标; (2)若点P坐标为(1, 6),连接PA, PB,则△PAB的面积为 ; (3)是否存在点P,使△PAB的面积等于△ABC的面积?如果存在,请求出点P的坐标. 第 8 页 共 16 页 参考答案 1.解: 2.解: 3.⑴∠C=45°分⑵∠C=∠APC-∠A(证明略)⑶不成立,新的相等关系为∠C=∠APC+∠A(证明略) 第 9 页 共 16 页 4.解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0, ∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4, ∵S四边形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5, ∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4) (2)如图, 延长CA,∵AF是∠CAE的角平分线,∴∠CAF=0.5∠CAE, ∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG, ∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°, ∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO, ∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP, ∵∠CAF=∠PAG,∴∠PAG=∠ADP, ∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90° 即:∠APD=90° (3)不变,∠ANM=45°理由:如图, ∵∠AOD=90°,∴∠ADO+∠DAO=90°, ∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM, ∵NA是∠OAD的平分线,∴∠DAN=0.5∠DAO=0.5∠BDM, ∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD), ∵MN是∠BMD的角平分线,∴∠DMN=0.5∠BMD, ∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45° 在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°, 在△AMN中, ∠ANM=180°﹣(∠NAM+∠NMA) =180°﹣(∠DAN+∠DAM+∠DMN+∠DMA) =180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°, ∴D点在运动过程中,∠N的大小不变,求出其值为45° 5.略 6.解: (1)120°;∠CBN (2)∵AM∥BN, 第 10 页 共 16 页 ∴∠ABN+∠A=180°, ∴∠ABN=180°-60°=120°, ∴∠ABP+∠PBN=120°, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠CBP,∠PBN=2∠DBP, ∴2∠CBP+2∠DBP=120°, ∴∠CBD=∠CBP+∠DBP=60°; (3)不变,∠APB:∠ADB=2:1. ∵AM∥BN, ∴∠APB=∠PBN,∠ADB=∠DBN, ∵BD平分∠PBN, ∴∠PBN=2∠DBN, ∴∠APB:∠ADB=2:1; (4)∵AM∥BN, ∴∠ACB=∠CBN, 当∠ACB=∠ABD时,则有∠CBN=∠ABD, ∴∠ABC+∠CBD=∠CBD+∠DBN, ∴∠ABC=∠DBN, 由(1)可知∠ABN=120°,∠CBD=60°, ∴∠ABC+∠DBN=60°, ∴∠ABC=30°. 7.解:(1)∵ED∥BC,∴∠B=∠EAD,∠C=∠DAE,故答案为:∠EAD,∠DAE; (2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD, ∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°, (3)A.如图2,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF, ∴∠ABE=∠BEF,∠CDE=∠DEF, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°, ∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°, ∴∠BED=∠BEF+∠DEF=30°+35°=65°;故答案为:65; B、如图3,过点E作EF∥AB, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70° ∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35° ∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=35°, ∴∠BED=∠BEF+∠DEF=180°﹣n°+35°=215°﹣n°.故答案为:215°﹣n. 8.解:(1)a=-4,b=8;(2)D(-6,0),(-2,0),(0,4),(0,12);(3)45°. 9.解: 第 11 页 共 16 页 10.解: 第 12 页 共 16 页 11.解: 第 13 页 共 16 页 12.解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC, ∵点A的坐标是(1,0),∴点E的坐标是(-2,0);故答案为:(-2,0); (2)①∵点C的坐标为(-3,2).∴BC=3,CD=2, ∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2; ∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2; ②当点P在线段BC上时,点P的坐标(-t,2), 当点P在线段CD上时,点P的坐标(-3,5-t); ③能确定,如图,过P作PE∥BC交AB于E,则PE∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y. 13.解: 14.解:(1)∵点A(0,8),∴AO=8, ∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8), 第 14 页 共 16 页 故答案为:(8,8); (2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m, ∵△AOB绕点A逆时针旋转90°得△ACD, ∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°, ∴四边形OACE是矩形,∴DE⊥x主,OE=AC=8, 分三种情况: a、当点B在线段OE的延长线上时,如图1所示: 则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8); b、当点B在线段OE上(点B不与O,E重合)时,如图2所示: 2则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m+4m(0<m<8); c、当点B与E重合时,即m=8,△BCD不存在; 综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8); ②当S=6,m>8时,0.5m﹣4m=6,解得:m=4±222(负值舍去),∴m=4+2; 当S=6,0<m<8时,﹣0.5m+4m=6,解得:m=2或m=6, ∴点B的坐标为(4+2,0)或(2,0)或(6,0). 15. 第 15 页 共 16 页 第 16 页 共 16 页 本文来源:https://www.wddqw.com/doc/700ddf67757f5acfa1c7aa00b52acfc789eb9f14.html