方差、 标准差 有什么区别 为什么要每个数与平均相减再取平方,取它们的差的绝对值不也可以吗?? 比如一组数据: 7.5,7.5,10,10,10 另一组数据: 6,9,10,10,10 两组数据的平均数显然都是9 他们与平均数的差的绝对值都为6 第一组数据的方差=7.5 第二组数据的方差=12 不相等了吧~~~方差把数据中数值的拨动给扩大了~~ 使得一些很难从其他数据中看到的给显示了出来~~ 方差(Variance)是实际值与期望值之差的平方平均数, 而标准差(Standard deviation)是方差的算术平方根. 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。 样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 方差和标准差。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。方差相应的计算公式为 标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。 DSTDEV() 操作目标是样本总体的部分样本。此值是估算全局标准偏差。 DSTDEVP()如果数据库中的数据为样本总体,则此值是真实标准偏差。 这根统计学有关。前者是利用部分数据推测全局样本的标准偏差。内部使用的统计公式不一样你就不要纠结了。有兴趣你必须找一本统计学看看。或者到百度上看看标准偏差 词条。 后者是全局的实际标准偏差。 应用范围不一样 。 一般来说做样本调查都没办法调查样本总体。只能随机在总体中抽取有代表性的样本构成研究对象。 因此此时你得到的数据都是部分样本。此时应该使用dstdev() ,来估算全局样本偏差。 如果你使用的是dstdevp(),那么得到的结果只是采样样本的偏差。 本文来源:https://www.wddqw.com/doc/7273c69689d63186bceb19e8b8f67c1cfbd6ee5b.html