The Manifolds with Ricci Curvature Decay to Zero

时间:2023-01-17 15:55:11 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
The Manifolds with Ricci Curvature Decay to Zero

Huashui Zhan

【期刊名称】《理论数学进展(英文)》 【年(),期】2012(2)1

【摘 要】The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R × N is true. 【总页数】3(P36-38) 【关键词】Cheeger-Gromoll;Theorem;Busemann;Function;Complete;Riemannian;Manifold;Ricci;Curvature;Decay;to;Zero 【作 者】Huashui Zhan 【作者单位】不详 【正文语种】 【中图分类】O1 【相关文献】

1.Comparison theorems on Finsler manifolds with weighted Ricci curvature bounded below [J], Songting YIN


2.On the first eigenvalue of Finsler manifolds with nonnegative weighted Ricci curvature [J], YIN SongTing;HE Qun;SHEN YiBing;;;;;;;;;;;;;;;;;;;;;; 3.MANIFOLDS WITH POINTWISE PINCHED RICCI CURVATURE [J], Gu Huiling

4.Prescribing Curvature Problems on the Bakry-Emery Ricci Tensor of a Compact Manifold with Boundary [J], Weimin SHENG; Lixia YUAN 5.Erratum to “Manifolds with Bakry-Emery Ricci Curvature Bounded Below”, Advances in Pure Mathematics, Vol. 6 (2016), 754-764 [J], Issa Allassane Kaboye;Bazanfaré Mahaman

因版权原因,仅展示原文概要,查看原文内容请购买


本文来源:https://www.wddqw.com/doc/7aa1a67bb7daa58da0116c175f0e7cd184251886.html