The Manifolds with Ricci Curvature Decay to Zero Huashui Zhan 【期刊名称】《理论数学进展(英文)》 【年(卷),期】2012(2)1 【摘 要】The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R × N is true. 【总页数】3页(P36-38) 【关键词】Cheeger-Gromoll;Theorem;Busemann;Function;Complete;Riemannian;Manifold;Ricci;Curvature;Decay;to;Zero 【作 者】Huashui Zhan 【作者单位】不详 【正文语种】中 文 【中图分类】O1 【相关文献】 1.Comparison theorems on Finsler manifolds with weighted Ricci curvature bounded below [J], Songting YIN 2.On the first eigenvalue of Finsler manifolds with nonnegative weighted Ricci curvature [J], YIN SongTing;HE Qun;SHEN YiBing;;;;;;;;;;;;;;;;;;;;;; 3.MANIFOLDS WITH POINTWISE PINCHED RICCI CURVATURE [J], Gu Huiling 4.Prescribing Curvature Problems on the Bakry-Emery Ricci Tensor of a Compact Manifold with Boundary [J], Weimin SHENG; Lixia YUAN 5.Erratum to “Manifolds with Bakry-Emery Ricci Curvature Bounded Below”, Advances in Pure Mathematics, Vol. 6 (2016), 754-764 [J], Issa Allassane Kaboye;Bazanfaré Mahaman 因版权原因,仅展示原文概要,查看原文内容请购买 本文来源:https://www.wddqw.com/doc/7aa1a67bb7daa58da0116c175f0e7cd184251886.html