高中数学基础差该怎么学习
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
高中数学基础差该怎么学习 一、快速掌握基础知识 对于基础薄弱的同学来说,课本就是他们第一步需要掌握的提分法宝。想要提高数学成绩,你需要记熟数学课本里的每一个知识点,看懂每一个例题,一章一章的进行掌握。 你可以先记公式,背熟之后在接着研究例题,最后去看课后习题,用例题和习题去思考该怎么解,不要急着去计算,先想就好,然后在翻看课本看公式定理是怎么推导的,尤其是过程和应用案例。对于课本中的典型问题,更是要深刻的理解,并学会解题后反思。这样才能够深刻理解这个问题,跳出题海这个怪圈。 做好错题笔记,记录容易犯的错误,分析错误的原因,找到正确的办法。不要盲目的去做题,必须要在搞清楚概念的基础上做这些才是有用的。 二、学会运用基础知识 在掌握数学基础知识的同时,要学会知识的运用,这样你才能在考试中拿到分数。高中数学学习的特点是:速度快、容量大、方法多。而这对于基础差的同学来说,有时听了会记不住,或是记住了却不会解题。这时候就需要我们把笔记记好,不需要一字不落的记下老师说的话,只需要把关键的思路和结论记下来就可以了,课后在去整理、回看笔记,这也是再学习的一个过程。 想要学好数学题就必须要多做题,只有做了一定题目才能学好数学,而且做题是高中数学学习的主旋律。但是这里的做题不是盲目做题,而是要看题思考,学会思考、反思、总结才是学习数学的王道。 其实数学解题并不难,分析题干,挖掘已知条件,寻找这些条件之间有什么关系,得出一个有用的结论,这个结论是我们所要用来解决问题的关键,这就是数学解题的形式。所以想要学好数学,主要靠的是答题的思路,而不是作出某道题的方法。 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 1.数形结合思想方法 数形结合就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。使问题化难为易、化繁为简,从而得到解决。例如,在一些分子、分母都是三角函数或一次函数的代数式中,要求它的值域,很多都转化为经过两点的直线的距离来求解;又或者在一些含有根号的代数式的题目中,其结构没有明显的几何意义,此时利用两点间距离公式可能做不出来,若能利用换元法,运用数形结合的思想方法,也可以很快解决问题。由此可知,数学结合思想方法是数学解题中非常重要的方法。 2.分类讨论思想方法 分类讨论思想方法是指在解答某些数学问题时,按照一定的原则或某一确定的标准,在比较的基础上,将数学对象划分为若干既有联系又有区别的部分,然后逐类进行讨论,再把这几类的结论汇总,从而得出问题的答案。例如,解不等式ax>2时,我们就把它分为a>0、a=0和a<0三种情况来讨论,并依照这三种情况进行下一步骤的解题。这样就显得清晰有条理,也不会漏做每一种可能了。 3.函数与方程的思想方法 函数与方程的思想是指在解决某些数学问题时,构造适当的函数与方程,把问题转化为研究辅助函数与辅助方程性质的思想例如,求方程的根的分布问题时,当然可以用解方程的方式,一步步算下来,但是却非常的繁琐,而运用函数的观点去求解,那不等式的推理证明过程则会简洁明了许多。不信同学们可以在下面算算这道题: 4.等价转化思想方法 等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。同学们在遇到难以直接做出的问题的时候,通过转化变成我们比较熟悉的问题来处理,或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式。例如,在有关探求参数 的取值范围问题中,当直接构设以参数为元的不等式较为困难时,常可引入的a相关系数a,借助a把问题进行等价转化。 感谢您的阅读,祝您生活愉快。 本文来源:https://www.wddqw.com/doc/7b57ec8dbc1e650e52ea551810a6f524cdbfcb72.html