等差数列求和公式以及推导所用的方法 在遇到等差数列的题目时,一定要仔细观察数列之间的规律,利用公式解题。下面是由编辑为大家整理的“等差数列求和公式以及推导所用的方法”,仅供参考,欢迎大家阅读本文。 求和公式: 1、等差数列基本公式:末项=首项+(项数-1)*公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)*公差和=(首项+末项)*项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和。 2、Sn=na(n+1)/2n为奇数 sn=n/2(An/2+An/2+1)n为偶数 3、等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。 4、公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n。 推导方法: (1)从通项公式能够看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 (2)从等差数列的概念、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。 (3)若m,n,p,q∈N*,且,m+n=p+q,则有,a(m)+a(n)=a(p)+a(q)S(2n-1)=(2n-1)*a(n)S(2n+1)=(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。若m+n=2p,则a(m)+a(n)=2*a(p)。 证明由:于p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n);p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);m+n=p+q,因此p(m)+p(n)=p(p)+p。 本文来源:https://www.wddqw.com/doc/7f6d3466158884868762caaedd3383c4bb4cb4c2.html