多普勒效应 论文

时间:2023-01-28 05:29:12 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
多普勒效应及其应用

姓名:李睿 学号:0840308118 班级:测控一班

一、什么是多普勒效应

在日常生活中,我们有过这样的经验,在铁路旁听行驶中火车的汽笛声,当火车鸣笛而来时,人们会听到汽笛声的音调变高.相反,当火车鸣笛而去时,人们则听到汽笛声的音调变低.像这样由于波源或观察者相对于介质有相对运动时,观察者所接收到的波频率有所变化的现象就叫做多普勒效应.这种现象是奥地利物理学家多普勒(18031853)于1842首先发现的,因此以他的名字命名. 二、多普勒效应的演示实验

在上述火车鸣笛的例子中,实际上火车鸣笛的频率并没有改变,而是由于声源和观察者之间有相对运动,使人耳接收到声音的频率发生了变化,所以人耳听到汽笛的音调发生了变化.为了说明这个问题,我们可以用水波代替声波(都是机械波),做如下演示实验.在盛有清水的大水槽中,以一端粘有直径约为8mm的石蜡球的细弹簧作为弹簧单振子,使单振子与水面接触,若使单振子沿竖直方向周期性地上下击打水面,这时,水面上就形成向四周传播的周期性同心圆波.若将振动着的单振子在水面上向右平移、便可看到从振源中心到右槽壁间的波纹变密、波长缩短,右壁接收圆波的频率变大,而振源中心到左槽壁的波纹变疏,波长增大,左槽壁接收圆波的频率变小,该实验仪器结构简单,易于取材,制作简便,便于操作,直观性强,可信度高,具有较好的实验效果.实验结果表明,单振子(振源)本身的频率并没有改变,而是水槽壁(接收者)接收的水波的频率发生了变化,这就与上述火车鸣笛的情况相类似了.通过该实验的演示,我们就不难理解波的多普勒效应了. 三、声波多普勒效应的理论分析

结合教材的阐述,我们还知道,当波源与观察者有相对运动时,如果二者相互接近,观察者接收到波的频率增大;如果二者远离,观察者接收到波的频率减小.对于这种变化关系,下面笔者由浅入深地分三种情况针对声波做如下讨论. 首先,设声源速度为vS,接收者速度为vB,v表示声波在介质中的传播速度,当声源向接收者运动时,vS取正值,而背离接收者运动时,vS取负值;当观察者向声源运动时,vB取正值,而背离声源运动时,B取负值,波速v总取正值. 1.声源不动,观察者以速度vB相对于介质运动,即vS0、vB0 如观察者向着声源运动,则vB0.因观察者以速度vB迎向声源运动,相当于波以速度v+vB通过接收者.单位时间内接收到的波数就是接收到的频率, ν=(v+vB)/λ=(v+vB)/(vT)=[(v+vB)/v]ν=[1+(vB/v)ν 该式表明:当观察者向声源运动时,接收到的频率ν′为声源频率的[1+(vB/v)]倍;当观察者背离声源运动时,vB0,则ν′<ν,即观察者接收到的频率ν′小于声源的振动频率ν.读者可自行分析当vB=-v时,会发生什么情况? 2.观察者不动,声源以速度vS相对于介质运动,即vB=0,vS≠0时。如声源向着观察者运动,这时vS>0.假定vS<v,因为声速仅决定于介质的性质,与声源的运动与否无关.所以在一个周期T内声源在S点发出的振动向前传播的距离等于波长λ.如声源不动,则波形。但若声源运动,则在一个周期的时间内声源在波的传播方向上通过一段路程vST而达到S′点,结果整个波形。中点S′、B′间的虚线所示.由于声源做匀速运动,所以,波形无畸弯.只是波长变小,其值为 λ′= λ-vST=vT-vST=(v-vS)1ν.所以观察者在单位时间内接收到的波数为 ν′=v/λ′=[v/(v-vS)]ν 该式表明:当声源向着观察者运动时,观察者接收的频率是声源频率的v/(v-vS)倍.如声源背离观察者运动,则vS<0,所以有ν′<ν,即观察者接收到的频率比声源频率降低了.现在我们就不难明白前述火车相对观察者运动时音


调变化的本质原因了.从以上所讨论的两种情况中,我们不难看出,无论是接收者相对介质运动还是声源相对介质运动,接收者接收到波的频率的变化情况虽然一样,但两种变化的本质机理却不同.前者是由相对波速的变化引起,而后者是由波长的变化引起.根据以上两种情况的讨论,我们可以很容易证明,当观察者和声源同时相对介质运动,即vB≠0、vS0时,观察者接收到声波的频率为 ν′=(v+vB)/[(v-vS)/ν]=[(v+vB)/(v-vS)ν 该式也可以说是以上两种讨论的综合,如果在vS和vB两个量中有一个为零时,就可得出上面的①、②式分别所表示的两种情况. 四、光波的多普勒效应

具有波动性的光也会出现这种效应,它又被称为多普勒-斐索效应. 因为法国物理学斐索(1819~1896年)于1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法.光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化. 如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移。 五、声波的多普勒效应的应用

声波的多普勒效应也可以用于医学的诊断,也就是我们平常说的彩超。彩超简单的说就是高清晰度的黑白B超再加上彩色多普勒,首先说说超声频移诊断法,即D超,此法应用多普勒效应原理,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率有所改变,此种频率的变化称之为频移,D超包括脉冲多普勒、连续多普勒和彩色多普勒血流图像。彩色多普勒超声一般是用自相关技术进行多普勒信号处理,把自相关技术获得的血流信号经彩色编码后实时地叠加在二维图像上,即形成彩色多普勒超声血流图像。由此可见,彩色多普勒超声(即彩超)既具有二维超声结构图像的优点,又同时提供了血流动力学的丰富信息,实际应用受到了广泛的重视和欢迎,在临床上被誉为“非创伤性血管造影”为了检查心脏、血管的运动状态,了解血液流动速度,可以通过发射超声来实现。由于血管内的血液是流动的物体,所以超声波振源与相对运动的血液间就产生多普勒效应。血管向着超声源运动时,反射波的波长被压缩,因而频率增加。血管离开声源运动时,反射波的波长变长,因而在单位时向里频率减少。反射波频率增加或减少的量,是与血液流运速度成正比,从而就可根据超声波的频移量,测定血液的流速。

我们知道血管内血流速度和血液流量,它对心血管的疾病诊断具有一定的价值,特别是对循环过程中供氧情况,闭锁能力,有无紊流,血管粥样硬化等均能提供有价值的诊断信息。 超声多普勒法诊断心脏过程是这样的:超声振荡器产生一种高频的等幅超声信号,激励发射换能器探头,产生连续不断的超声波,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号就为换能器所接受,就可以根据反射波与发射的频率差异求出血流速度,根据反射波以频率是增大还是减小判定血流方向。为了使探头容易对准被测血管,通常采用一种板形双叠片探头。

交通警察向行进中的车辆发射频率已知的超声波同时测量反射波的频率,根据反射波的频率变化的多少就能知道车辆的速度。装有多普勒测速仪的监视器有时就装在路的上方,测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。

多普勒效应也可以用波在介质中传播的衰减理论解释. 波在介质中传播, 会出现频散现, 随距离增加, 高频向低频移动。总之,多普勒效应在科学技术上有着广泛的应用


本文来源:https://www.wddqw.com/doc/af60fe6830687e21af45b307e87101f69e31fb0f.html