投针试验

时间:2023-02-20 16:21:26 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
投针试验 投针问题

1777年法国科学布丰提出的一种计算圆周率的方法——随机投针法,即著名的布丰投针问题。 投针步骤

这一方法的步骤是:

1 取一张白纸,在上面画上许多条间距为a的平行线。

2 取一根长度为ll 的针,随机地向画有平行直线的纸上掷n次,观察针与直线相交的次数,记为m 3)计算针与直线相交的概率.

18世纪,法国数学布丰和勒可莱尔提出的“投针问题”,记载于布丰1777出版的著作中:“在平面上画有一组间距为a平行线将一根长度为ll的针任意掷在这个平面上,求此针与平行线中任一条相交的概率”布丰本人证明了,这个概率

p=2l/πd) π圆周率

利用这个公式可以用概率的方法得到圆周率的近似值。下面是一些资料 试验者 时间 投掷次数 相交次数 圆周率估计值 Wolf1850 5000 2532 3.1596 Smith 1855 3204 1218.5 3.1554 C.De Morgan 1680 600 382.5 3.137 Fox1884 1030 489 3.1595 Lazzerini 1901 3408 1808 3.1415929 Reina 1925 2520 859 3.1795

布丰投针实验是第一个用几何形式表达概率问题的例子,他首次使用随机实验处理确定性数学问题,为概率论的发展起到一定的推动作用。 像投针实验一样,用通过概率实验所求的概率来估计我们感兴趣的一个量,这样的方法称为蒙特卡罗方法(Monte Carlo method)。蒙特卡罗方法是在第二次世界大战期间随着计算机的诞生而兴起和发展起来的。这种方法在应用物理原子、固体物理化学生态学社会学以及经济行为等领域中得到广泛利用。 法国数学家布丰1707-1788最早设计了投针试验。并于1777年给出了针与平行线相交的概率的计算公式P=2L/πa其中L是针的长度,a是平行线间的距离,π圆周率)

由于它与π有关,于是人们想到利用投针试验来估计圆周率的值。[1] 此外,随便说出3个正数,以这3个正数为边长可以围成一个钝角三角形的概率P也与π有关,这个概率为 π-2/4,证明如下:


设这三个正数为xyz,不妨设x≤y≤z,对于每一个确定的z,则必须满足x+y>zx²+y²;﹤;,容易证明这两个式子即为以这3个正数为边长可以围成一个钝角三角形的充要条件,用线性规划可知满足题设的可行域为直线x+y=z与圆x²+y²=z²;围成的弓形,总的可行域为一个边长为z的正方形,则可以围成一个钝角三角形的概率P=S弓形/S正方形=πz²/4-z²/2/z²=π-2/4.因为对于每一个z,这个概率都为π-2/4因此对于任意的正数xyzP=π-2/4命题得证。 为了估算π的值,我们需要通过实验来估计它的概率,这一过程可交由计算机编程来实现,事实上x+y>zx²+y²;﹤;等价于(x+y-zx²+y²-z²;)﹤0,因此只需检验这一个式子是否成立即可。若进行了m次随机试验,有n次满足该式,当m足够大时,n/m趋近于(π-2/4,令n/m=π-2/4,解得π=4n/m+2,即可估计出π值。 值得注意的是这里采用的方法:设计一个适当的试验,它的概率与我们感兴趣的一个量(如π)有关,然后利用试验结果来估计这个量,随着计算机等现代技术的发展,这一方法已经发展为具有广泛应用性的蒙特卡罗方法。 计算π最稀奇方法之一

计算π的最为稀奇的方法之一,要数18世纪法国的博物学家C·布丰和他的投针实验:在一个平面上,用尺画一组相距为d平行线;一根长度小于d的针,扔到画了线的平面上;如果针与线相交,则该次扔出被认为是有利的,否则则是不利的.

布丰惊奇地发现:有利的扔出与不利的扔出两者次数的比,是一个包含π的表示式.如果针的长度等于d,那么有利扔出的概率2/π.扔的次数越多,由此能求出越为精确的π的值.

公元1901年,意大利数学家拉兹瑞尼作了3408次投针,给出π的值为

31415929——准确到小数6位.不过,不管拉兹瑞尼是否实际上投过针,他的实验还是受到了美国犹他州奥格登的国立韦伯大学的L·巴杰的质疑.通过几何、微积分、概率等广泛的范围和渠道发现π,这是着实令人惊讶的!

2证明

下面就是一个简单而巧妙的证明。找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离d。可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将平行线有两个交点。因此,如果圆圈扔下的次数为n次,那么相交的交点总数必为2n。现在设想把圆圈拉直,变成一条长为πd的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点,3个交点,2交点,1个交点,甚至于都不相交。由于圆圈和直线的长度同为πd,根据机会


本文来源:https://www.wddqw.com/doc/b5698ff689eb172ded63b771.html