1.特值检验法 对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。 例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为 A.-5/4 B.-4/5 C.4/5 D.2√5/5 解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。 2.极端性原则 将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。 3.剔除法 利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。 4.数形结合法 由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。 5.递推归纳法 通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。 6.顺推破解法 利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。 7.逆推验证法 将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。 8.正难则反法 从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。 9.特征分析法 对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。 例:256-1可能被120和130之间的两个数所整除,这两个数是: A.123,125 B.125,127 C.127,129 D.125,127 解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C。 10.估值选择法 有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。 本文来源:https://www.wddqw.com/doc/b82441353e1ec5da50e2524de518964bcf84d2c0.html