本文格式为Word版,下载可任意编辑 高一班级数学必修1学问点整理 高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,不能再依靠学校时期老师“填鸭式”的授课,同学们要学会定期对所学的学问点进展总结归纳。以下是我为大家预备的高一班级数学必修1学问点整理,期望能关怀到大家。 高一班级数学必修1学问点整理 【篇一】 一:集合的含义与表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能推断一个给定的东西是否属于这个整体。 把争辩对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,那么一元素是否属于这个集合是确定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是的,不行重复的。 (3)元素的无序性:集合中元素的位置是可以转变的,并且转变位置不影响集合 3、集合的表示:{} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来{a,b,c} b、描述法: ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {xR|x-32},{x|x-32} 第 1 页 共 3 页 本文格式为Word版,下载可任意编辑 ②语言描述法:例:{不是直角三角形的三角形} ③Venn图:画出一条封闭的曲线,曲线里面表示集合。 实数集R 6、集合间的根本关系 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合里,那么元素属于集合,即: (2)元素不在集合里,那么元素不属于集合,即: 留意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q aA a¢A (1).“包含”关系(1)子集 定义:假设集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。 二、函数的概念 函数的概念:设A、B是非空的数集,假设依据某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),xA. (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|xA}叫做函数的值域. 函数的三要素:定义域、值域、对应法那么 第 2 页 共 3 页 本文格式为Word版,下载可任意编辑 函数的表示方法:(1)解析法:明确函数的定义域 (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。 (3)列表法:选取的自变量要有代表性,可以反响定义域的特征。 4、函数图象学问归纳 (1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. (2)画法 A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。 (3)函数图像平移变换的特点: 1)加左减右只对x 2)上减下加只对y 3)函数y=f(x)关于X轴对称得函数y=-f(x) 4)函数y=f(x)关于Y轴对称得函数y=f(-x) 5)函数y=f(x)关于原点对称得函数y=-f(-x) 6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得 函数y=|f(x)| 7)函数y=f(x)先作x0的图像,然后作关于y轴对称的图像得函数f(|x|) 第 3 页 共 3 页 本文来源:https://www.wddqw.com/doc/e142fff23286bceb19e8b8f67c1cfad6195fe9fd.html