2018年初中奥数题 初中奥数题试题一 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0 B.a,b之一是0 C.a,b互为相反数 D.a,b互为倒数 2.下面的说法中正确的是 ( ) A.单项式与单项式的和是单项式 B.单项式与单项式的和是多项式 C.多项式与多项式的和是多项式 D.整式与整式的和是整式 3.下面说法中不正确的是 ( ) A. 有最小的自然数 B.没有最小的正有理数 C.没有最大的负整数 D.没有最大的非负数 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>0 5.大于-π并且不是自然数的整数有 ( ) A.2个 B.3个 C.4个 D.无数个 6.有四种说法: 甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 丁.负数的立方不一定大于它本身。 这四种说法中,不正确的说法的个数是 ( ) A.0个 B.1个 C.2个 D.3个 7.a代表有理数,那么,a和-a的大小关系是 ( ) A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a 8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数 B.乘以同一个整式 C.加上同一个代数式 D.都加上1 9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ) A.一样多 B.多了 C.少了 D.多少都可能 10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( ) A.增多 B.减少 C.不变 D.增多、减少都有可能 二、填空题(每题1分,共10分) 1.19891990²-19891989²=______。 2.1-2+3-4+5-6+7-8+…+4999-5000=______。 3.当a=-0.2,b=0.04时,代数式 a²-b的值是______。 4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克。 三、解答题 1.甲乙两人每年收入相等,甲每年储蓄全年收入的15,乙每月比甲多开支100元,三年后负债600元,求每人每年收入多少? 4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。 5.求和: 1 / 3 。 6.证明:质数p除以30所得的余数一定不是合数。 3.如图1-96所示,已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°。求证:DA⊥AB。 初中奥数题试题二 一、选择题 1.数1是 ( ) A.最小整数 B.最小正数 C.最小自然数 D.最小有理数 2.a为有理数,则一定成立的关系式是 ( ) A.7a>a B.7+a>a C.7+a>7 D.|a|≥7 3.3.1416×7.5944+3.1416×(-5.5944)的值是 ( ) A.6.1632 B.6.2832 C.6.5132 D.5.3692 4.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( ) A.225 B.0.15 C.0.0001 D.1 二、填空题 1.计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______。 2.求值:(-1991)-|3-|-31||=______。 3.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009。则n的最小值等于______。 4.不超过(-1.7)²的最大整数是______。 5.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______。 三、解答题 1.已知3x2-x=1,求6x3+7x2-5x+2000的值。 2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件。试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元? 4.求方程|xy|-|2x|+|y|=4的整数解。 5.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%) 6. 对k,m的哪些值,方程组至少有一组解? 初中奥数题试题三 一、选择题 1.下面给出的四对单项式中,是同类项的一对是 ( ) A. x²y与-3x²z B.3.22m²n与 nm² C.0.2a²b与0.2ab² D.11abc与 ab 2.(x-1)-(1-x)+(x+1)等于 ( ) A.3x-3 B.x-1 C.3x-1 D.x-3 3.两个10次多项式的和是 ( ) A.20次多项式 B.10次多项式 C.100次多项式 D.不高于10次的多项式 4.若a+1<0,则在下列每组四个数中,按从小到大的顺序排列的一组是 ( ) A.a,-1,1,-a B.-a,-1,1,a 2 / 3 33甲经过9小时到东站,乙经过16小时到西站,求两站距离。 C.-1,-a,a,1 D.-1,a,1,-a 5.a=-123.4-(-123.5),b=123.4-123.5,c=123.4-(-123.5),则 ( ) A.c>b>a B.c>a>b C.a>b>c D.b>c>a 6.若a<0,b>0,且|a|<|b|,那么下列式子中结果是正数的是 ( ) A.(a-b)(ab+a) B.(a+b)(a-b) C.(a+b)(ab+a) D.(ab-b)(a+b) 7.从2a+5b减去4a-4b的一半,应当得到( ) A.4a-b B.b-a C.a-9b D.7b 8.a,b,c,m都是有理数,并且a+2b+3c=m,a+b+2c=m,那么b与c ( ) A.互为相反数 B.互为倒数 C.互为负倒数 D.相等 9.张梅写出了五个有理数,前三个有理数的平均值为15,后两个有理数的平均值是10,那么张梅写出的五个有理数的平均值是 ( ) A.5 B.8 C.12 D.13 二、填空题(每题1分,共10分) 1.2+(-3)+(-4)+5+6+(-7)+(-8)+9+10+(-11)+(-12)+13+14+15=______。 2.若P=a²+3ab+b²,Q=a²-3ab+b²,则代入到代数式P-[Q-2P-(-P-Q)]中,化简后,是______。 3.小华写出四个有理数,其中每三数之和分别为2,17,-1,-3,那么小华写出的四个有理数的乘积等于______。 4.一种小麦磨成面粉后,重量要减少15%,为了得到4250公斤面粉,至少需要______公斤的小麦。 三、解答题 3. 液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量。 4. 6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围。 5. 甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,3 / 3 本文来源:https://www.wddqw.com/doc/e6ceddc759fafab069dc5022aaea998fcd224028.html