三角函数知识点归纳总结

时间:2024-01-01 14:18:17 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
三角函数知识点归纳总结

许多同学想了解三角函数,那么三角函数有哪些知识点呢?快来了解一下吧。下面是由小编为大家整理的“三角函数知识点归纳总结”,仅供参考,欢迎大家阅读。 三角函数知识点归纳总结

一、见“给角求值”问题,运用“新兴”诱导公式 一步到位转换到区间(-90o90o)的公式.

1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z); 3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z). 二、见“sinα±cosα”问题,运用三角“八卦图”

1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方); 2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方); 3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内; 4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.

三、见“知15”问题,造Rt△,用勾股定理,熟记常用勾股数(345)(51213)(72425),仍然注意“符号看象限”。

四、见“切割”问题,转换成“弦”的问题。

五、“见齐思弦”=>“化弦为一”:已知tanα,求sinαcosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.

六、见“正弦值或角的平方差”形式,启用“平方差”公式: 1.sin(α+β)sin(α-β)= cos2α-sin2β.

七、见“sinα±cosαsinαcosα”问题,起用平方法则: (sinα±cosα)2=1±2sinαcosα=1±sin2α,故

1.sinα+cosα=t,(t2≤2),则2sinαcosα=t2-1=sin2α; 2.sinα-cosα=t,(t2≤2),则2sinαcosα=1-t2=sin2α. 八、见“tanα+tanβtanαtanβ”问题,启用变形公式: tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ= 九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)

sin2α-sin2β;2.

cos(α+β)cos(α-β)=


1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;

2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;

3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数。 y=Acot(wx+φ)的对称性质。

十、见“求最值、值域”问题,启用有界性,或者辅助角公式: 1.|sinx|≤1,|cosx|≤1;

2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2); 3.asinx+bcosx=c有解的充要条件是a2+b2≥c2. 十一、见“高次”,用降幂,见“复角”,用转化。 1.cos2x=1-2sin2x=2cos2x-1.

2.2x=(x+y)+(x-y);2y=(x+y)-(x-y);x-w=(x+y)-(y+w)等。 拓展阅读:高中数学考试解题方法

调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小22个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,


本文来源:https://www.wddqw.com/doc/ebc91d9e72fe910ef12d2af90242a8956becaaef.html