矩形练习题 1.正方形具有而矩形不一定具有的性质是( ) A.四个角都是直角;B.对角线相等;C.对角线互相平分;D.对角线互相垂直 2.如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形 的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四 边形ABEF就是一个最大的正方形,他的判断方法是________- 3.如图,在菱形ABCD中,AC、BD相交于点 O,且CA:BD=l:3 , 若AB=2,求菱形ABCD的面积. 4.如图,以△ABC的三边长为边在 BC的同一侧分别作三个等边三角形, 即△ABD、△ACF、△BCE,请回答下列问题: (1)四边形ADEF是什么四边形? (2)当△ABC满足什么条件时,四边形ADEF是矩形? 5.在一次数学兴趣小组活动中,组长将两条等宽的长纸条倾斜地重 叠着,并问同学,重叠部分是一个什么样的四边形?同学说:这是 一个平行四边形.乙同学说:这是一个菱形.请问:你同意谁的看 法要解决此题,需建构数学模型,将实际问题转化成数学问题来解决,即已知:如图,四边形ABCD中,AB∥CD,AD∥BC,边CD与边BC上的高相等,试判断四边形 ABCD的形状. 6.检查你家(或教室)的门框(或方桌面)是不是矩形,如果仅有一根较长的绳子,你怎样检查?并解释其中的道理。 7.如图,在△ABC中,∠ACB=90○ ,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,并且AF=CE. (1)求证:四边形ACEF是平行四边形; (2)当上B的大小满足什么条件时, 四边形ACEF是菱形?请回答并证明你的结论; (3)四边形ACEF有可能为正方形吗?为什么? 8.如图,矩形ABCD中,AC与 BD交于 O点,BE⊥AC于 E,CF⊥BD于 F.求证:BE=CF. 9.如图,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y. (1)写出y与x的函数关系,并确定自变量x范围. (2)有人提出一个判断:“关于动点P,⊿PBC面积与 ΔPAD面积之和为常数”.请你说明此判断是否正确,并说明理由 四:课后小结 本文来源:https://www.wddqw.com/doc/f236fd63cc84b9d528ea81c758f5f61fb7362807.html