【#初一# 导语】每天有个好心情,做事干净利落,学习积极投入,效率自然高。另一方面,把个人和集体结合起来,和同学保持互助关系,团结进取,也能提高学习效率。以下是©文档大全网为您整理的《初一下册数学期中知识点》,供大家查阅。
1.初一下册数学期中知识点 篇一
一、轴对称:
1.轴对称图形:如果一个图形沿一条直线对折,对折后的两部分能,那么这个图形就是,这条直线就是它的。
2.两个图形成轴对称:如果一个图形沿一条直线折叠后,它能与另一个图形,那么这两个图形成,这条直线就是它们的,折叠时重合的对应点就是
3.轴对称的性质:轴对称(成轴对称的两个)图形的对应线段,对应角
4.垂直平分线的定义:
5.对称轴的画法:先连结一对点,再作所连线段的
6.对称点的画法:过已知点作对称轴的并
二、平移
图形的平移:一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为,它是由移动的和所决定。
平移的特征:经过平移后的图形与原图形对应线段(或在同一直线上)且,对应角,图形的与都没有发生变化,即平移前后的两个图形连结每对对应点所得的线段(或在同一直线上)且。
三、旋转
图形的旋转:把一个图形绕一个沿某个旋转一定的变换,叫做,这个定点叫做。
图形的旋转由、和所决定。
注意:①旋转在旋转过程中保持不动;②旋转分为时针和时针。③旋转一般小于360°。
旋转的特征:图形中每一点都绕着旋转了的角度,对应点到旋转中心的相等,对应线段,对应角,图形的和都没有发生变化,也就是旋转前后的两个图形。
旋转对称图形:若一个图形绕一定点旋转一定角度(不超过180°)后,能与重合,这种图形就叫。
四、中心对称
中心对称图形:把一个图形绕着某一个点旋转°后,如果能够与重合,那么这个图形叫做图形,这个点就是它的。
成中心对称:把一个图形绕着某一个点旋转°后,如果它能够与重合那么就说这两个图形关于这个点成,这个点叫做。
这两个图形中的对应点叫做关于中心的。
中心对称的性质:关于中心对称的图形,对应点所连线段都经过,而且被对称中心。(中心对称是旋转对称的特殊情况)。
中心对称点的作法——连结和,并延长一倍。
对称中心的求法——方法①:连结一对对应点,再求其;
方法②:连结两对对应点,找他们的。
五、图形的全等
1.全等图形定义:能够完全的两个图形叫做全等图形。
2.图形变换与全等:一个图形经翻折、平移、旋转变换所得到的新图形与全等;全等的两个图形经过上述变换后一定能够。
3.全等多边形:⑴有关概念:对应顶点、对应边、对应角等。
⑵性质:全等多边形的、相等;
⑶判定:分别对应相等的两个多边形全等。
4.全等三角形:⑴性质:全等三角形的、相等;
⑵判定:分别对应相等的两个三角形全等。
2.初一下册数学期中知识点 篇二
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
19.公式与性质
多边形内角和公式:n边形的内角和等于(n-2)·180°
20.多边形外角和定理:
(1)n边形外角和等于n·180°-(n-2)·180°=360°
(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
21.多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有n(n-3)/2条对角线。
3.初一下册数学期中知识点 篇三
1、代数式:用运算符号“+—×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2、列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a。
二、几个重要的代数式(m、n表示整数)
(1)a与b的平方差是:a2—b2;a与b差的平方是:(a—b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n—1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:—a2—b,非负数是:a2,非正数是:—a2。
三、有理数
1、有理数:
(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;π不是有理数;
(2)注意:有理数中,1、0、—1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3、相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a—b+c的相反数是—a+b—c;a—b的相反数是b—a;a+b的相反数是—a—b;
4、绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|
5、有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数—小数>0,小数—大数<0。
四、有理数法则及运算规律。
1、有理数的运算法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
2、有理数加法的运算律:
(1)加法的交换律:a+b=b+a;
(2)加法的结合律:(a+b)+c=a+(b+c)。
3、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
4、有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
5、有理数乘法的运算律:
(1)乘法的交换律:ab=ba;
(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac。
6、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。
7、有理数乘方的法则:
正数的任何次幂都是正数;
4.初一下册数学期中知识点 篇四
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
b)指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
二、同底数幂的除法
(1)运用法则的前提是底数相同,只有底数相同,才能用此法则;
(2)底数可以是具体的数,也可以是单项式或多项式;
(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负;
三、整式的乘法
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。
正在阅读:
初一下册数学期中知识点03-08
党员公开共性承诺书:党员公开书共性09-03
小学三年级语文上册第三单元测试卷及答案:小学三年级语文上册第三单元测试卷07-18
有趣的三岁幼儿益智故事04-11
有关酒店餐厅常用电话口语12-13
2020安徽省宿州学院专职辅导员招聘启事12-07
2016年重庆市璧山区三季度(考核)招聘事业单位人员人员考试报名入口02-10