[高中数学立体几何知识点总结]高中数学立体几何部分知识点

时间:2021-07-01 20:32:38 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#高考# 导语】立体几何是高考数学中的重点,同时也是高考试卷中的必考题目。®文档大全网整理了相关内容,快来看看吧!希望能帮助到你,更多相关讯息请关注®文档大全网!




高中数学立体几何知识点一


  数学知识点1、柱、锥、台、球的结构特征


  (1)棱柱:


  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。


  (2)棱锥


  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。


  (3)棱台:


  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点


  (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成


  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。


  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成


  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。


  (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成


  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。


  (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。


  数学知识点2、空间几何体的三视图


  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)


  注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。


  数学知识点3、空间几何体的直观图——斜二测画法


  斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;


  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。


高中数学立体几何知识点二


  一、平面


  通常用一个平行四边形来表示.


  平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.


  在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c…l,m,n…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:


  a)A∈l—点A在直线l上;Aα—点A不在平面α内;


  b)lα—直线l在平面α内;


  c)aα—直线a不在平面α内;


  d)l∩m=A—直线l与直线m相交于A点;


  e)α∩l=A—平面α与直线l交于A点;


  f)α∩β=l—平面α与平面β相交于直线l.


  二、平面的基本性质


  公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.


  公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.


  公理3经过不在同一直线上的三个点,有且只有一个平面.


  根据上面的公理,可得以下推论.


  推论1经过一条直线和这条直线外一点,有且只有一个平面.


  推论2经过两条相交直线,有且只有一个平面.


  推论3经过两条平行直线,有且只有一个平面.


  公理4平行于同一条直线的两条直线互相平行.


高中数学立体几何部分知识点.doc

本文来源:https://www.wddqw.com/fgn.html