【#教案# 导语】平均数是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。©文档大全网准备了以下内容,供大家参考!
篇一
一、教学目标:1、初步建立平均数的基本思想(即移多补少的统计思想),理解平均数的概念。
2、掌握简单的求平均数的方法,并能根据具体情况灵活选用方法进行解答。
3、培养学生估算的能力和应用数学知识解决实际问题的能力。
二、教学重点:
灵活选用求平均数的方法解决实际问题。
三、教学难点:
平均数的意义。
四、教学过程:
(一)故事导入:
课件出示;一个老猴子在森林中摘了12个桃子,回到家后叫来了三只小猴分桃子给他们,猴一7个、猴二4个、猴三1个。
师:对老猴分桃这件事,你有什么话想说吗?
生:三只猴分的桃子不一样多。
生:应该三只猴分的一样多
根据学生的回答板书:不一样多 一样多
(二)探究新知:
1、用磁性小圆片代替桃子(老师将磁性小圆片按照7、4、1、分别排列在黑板上)
请同学们仔细观察,四人小组讨论一下,你们能用哪些方法可以使每组的个数一样多。
2、交流反馈
(1)引出移多补少、(2)(7+4+1)÷3
师:观察移动后的小圆片,思考:移动后什么变了,什么没有变?
板书: 总数不变
一样多 不一样多
3、小结,并揭示课题
师:刚才我们通过移一移,算一算的方法,得出了一个同样的数4,这个数就叫平均数
(板书课题)
4、刚才有同学用(7+4+1)÷3=4的方法算出了他们的平均数,现在老师再摆一组为8个,这时平均数又是多少呢?会吗?
生:会。(生自己完成)
反馈 (7+4+1+8)÷4=5
比较归纳得出 : 总数÷份数= 平均数
(三)应用数学
教师课件出示列举生活中的平均数问题,学生自己阅读这些信息
1、 国家旅游局关于2004年“十一”黄金旅游周旅游信息的公告
(1) 上海东方明珠平均每天的门票收入为130万元,北京故宫平均每天门票收入为200万元
(2) 南京中山陵平均每天接待游客70000人,北京故宫平均每天接待游客50000人。
2、春暖花开北京连续5天日平均气温超过10℃。
3、三年级1班平均身高为136厘米。
(四)、研究平均身高
1、刚才谈到了平均身高,要求全班同学的平均身高,该怎么办呢?
出示三年级某班的身高统计表(单位:厘米)
①140 141 139 143142 145
②135 134 136 131 132 134
③130 131 132 130 128 127
④128 129 128 127 127 125
⑤124 127 124 125 124 123
⑥123 122 120 123 124 122
2、师:估计,全班的平均身高会在什么之间或是多少厘米?该怎么办?现有三种方案,你选择哪一种呢?
A、 选择第一排最矮的
B、 选择第六排的
C、 选择第一组有高,有矮的
师:说说你为什么这样选择?
3、学生试算
4、师:看到这个平均身高,你有什么想法?对于这个平均身高还有没有更大胆的想法,它还能代表哪些范围内的大概平均身高?
学生反馈
(五)、巩固发展。
选一选(用手势表示)
1、少先队第三中队发动队员种树,第一天种了180棵、第二天、第三天共种了315棵,平均每天种多少棵?( )
2、(180+315)÷2 2、(180+315)÷3
3、气象站在一天的1点、7点、13点、19点,测得的温度分别是摄氏8度、15度、24度、17度。请算出这天的平均气温。( )
4、(8+15+24+17)÷4 2、(8+15+24+17)÷(1+7+13+19)
(六)、拓展练习
1、猜老师平均每个月的开支
2、教师板书:平均每月开支1000元 提问,你知道这句话的意思吗?
老师把今年前三个月的开支情况做了大概的统计,
出示:2005年陈老师1——3月每月开支情况统计表
月份1月2月3月4月
金额108010201050
你能不能帮老师算一算,今年前三个月的平均每月开支多少元?
3、学生反馈
4、你们能不能预测一下老师4月份的开支大概是多少?
5、如果要使前4个月每月平均开支不超过1000元,四月份老师最多能花多少钱?
五、总结:
“求平均数”是新教材“ 统计与概率”领域内容的一部分。它与我们的现实生活紧密联系,现代社会的公共媒体大量使用统计图表表示信息,所以看懂统计图表是现代公民必备的数学素养。基于此本课教学把重点放在运用平均数的理念分析数据、理解数据的意义上,放在根据数据做出必要推断上。
篇二
一、创设情境,提出问题谈话:我们来进行一个小小的拍球比赛,下面我们请甲队的××(3人),和乙队的××(4人)到前面来,每人拿一个球。注意:比赛的规则是在规定的时间里,哪个队拍球的总个数最多,哪个队就获胜,听懂了吗?(听懂了)
师控制时间(5秒),根据拍球的个数板书,如:
甲队:6+7+8=21(个)
乙队:10+4+3+6=24(个)
结束后要求学生把球轻轻的放在这里,慢慢的走回座位。
师:下面两个队以最快的速度把你们这个队拍球的总数求出来。根据学生回答老师将上面的板书补完整。
师:我们来看看,在规定的时间里,甲队拍了21个,乙队拍了24个,哪个队赢了?(或问我们能说明乙队赢了吗?)
生发现不行!
师:你为什么说不行?
生:我们是3个人拍的,他们是4个人拍的。(你什么意思啊?)就是这样不公平。
师:甲队的队员听了他这么一说也都觉得不公平了,是吗?在人数不等的情况下,比较总数就不公平了,可在我们生活中就会遇到这样的情况,比如:刚刚我们进行了期中考试,我们是怎么比较三个班的成绩的呢? (比较平均数),我们这里就可以比较平均每人拍了多少个?
二、解决问题,探求新知
1、初步感知平均数产生的需要
生1:分别用21÷3=
24÷4=
分别求出等于多少
师:比较平均每人拍了多少个?先来帮甲队算一算,为什么“÷3”?再来帮乙队算一算,为什么“÷4”?
师:我们以乙队为例,这“6个”是表示什么?(可能有学生正好拍了6个)问有没有不同意见?(平均每人拍了6个)
2、理解平均数的意义
师:1号你明明拍了10个怎么变成6个了,多的哪儿去了(多的补给拍的少的人了)那么拍的少的2号拍了4个怎么变成6个了(拍的多的给了我几个,就慢慢增多了,)
师:多的补给了少的,多的就慢慢(少了),少的就慢慢(多了),最后他们4个人就慢慢变得相等了。这个6就是4个人拍的平均数。(板书:平均数)
问:这个平均数是怎么算出来的?(先加再除)
师:我们再来看看,多的10个给了少的,少的就慢慢增多,多到什么程度了?
生:每个人的相等。
师:那么这个6就是同学说的它是10、4、3、6这一组数的平均数,这个平均数就很好的反映了南边这组的整体水平。甲队和乙队,甲队平均水平7个,乙队平均水平6个,哪一个队的整体水平高些呢?学生直接说甲队。
小结:提问,刚才我们比较总数的时候,我们好多同学都有意见觉得比较总数不公平,那么当人数不相等的时候我们比较什么才公平呢?(平均数)
3、沟通平均数与生活的联系
师:同学们,平均数当我们需要它的时候来了,在我们生活中学习中,有很多地方都用到平均数。(学生举例子)
三、估计平均数的策略
1、 出示五一期间南通儿童乐园的游客统计图
谈话:同学们五一期间出去旅游了吗?去了哪儿?
(1)估一估
问:看到这张统计图,说说你读懂了什么信息?还没有发言的同学说说看。
生:1号1100人,2号来了1300人,3号1000人,4号900人,5号700人。
师:那么你还想了解点什么吗?(平均每天来了多少人?)出示问题:这五天平均每天来了多少人?
要求:不许计算,只能估一估。(生估计1000、1200、只要在700与1300之间就行)
如果有学生估计500、600、2000等,让学生讨论:可能是500、600、2000吗?为什么?
小结:最多的要给少的,多的就少了,平均数不可能比最多的还要多。少的会变多,平均数也不可能比最少的还要少。也就是平均数既要比谁少又要比谁多啊?
(2)算一算
师:好,每个同学再估计一个数把它藏在心里。要看估计的准不准就可以算一算,接下来就请同学们在自己的作业本上独自的认真的算一算,有不同方法的呆会儿来给我们介绍。
汇报:都是1000,问你是怎么算的?把你的方法介绍给我们。
简单的说:把这几天的总人数求出来,再除以5。也就是先……再……。还有没有不同的方法,一生用移多补少的方法介绍,也得到了1000,这叫移多补少。(板书移多补少)
(3)揭示估计方法
师:咦,刚才你第二次估计的数与1000接近的人举手。老师刚才也偷偷的估计了一下,老师估计的是2000,你们说可能吗?为什么呀?给我说说看!
生:平均数要比最多的少,比最少的要多。我们估计要有根有据。
师:从统计表上看,从2号开始来的人数越来越少,如果你是南通儿童乐园的管理人,你有什么招能吸引游客?(降低价格、提高环境)是个不错的招,下课后王老师会在网上把我们三3班同学的建议发给南通儿童乐园的管理人,好不好?
谈话:前天我们做了张试卷,这是4个同学的成绩。
问:的和最少的分别是多少分?他们的平均成绩肯定要比的怎么样?比最少的怎么样?
问:你想用什么方法算出他们的平均成绩?
分别介绍两种求平均数的方法。(90分)
4、分别出示三幅图片
谈话:水是生命之源,我国水资源相当丰富,但分布不均匀。
(1)我国严重的缺水地区
介绍:这是我国严重的缺水地区,他们一户人家平均每月用水量30千克,用它吃饭洗衣服洗菜。
(2)出示小芳家用水统计图
师:这是老师调查的小芳家用水统计图,第一季度用水16吨、第二季度用水24吨、第三季度35吨、第四季度21吨。你知道平均每月用水多少吨吗?
可能有学生会选1和2。安排选1的和选2的个一名代表到前面来。要求选2的向选1的同学提提问题?选2的问:题目要求的是什么?那么一年有几个月?那么你为什么还选1?问第三个问题时对方可能不回答了。
师:这个问题关键的地方要看求的平均每月用水多少吨?而1、3分别求的是什么?动笔算一算他家平均每月用水多少吨?(16+24+35+21)÷4=24(吨)
(3)小芳家平均每月用水约24吨
再同时出示(1)(3)两种画面,此时此刻你最想说的是什么?节约用水从我们自身做起。?
8.巩固练习
篇三
教学目标1.使学生理解“平均数”的含义,掌握简单求平均数的方法.能根据简单的统计表求平均数.
2.培养学生分析、综合的能力和操作能力.
教学重点
明确“求平均数”与“平均分”的区别,掌握求“平均数”的方法.
教学难点
理解平均数的概念,明确“求平均数”与“平均分”的区别.
教学步骤
一、铺垫孕伏.
1.小华4天读完60页书,平均每天读几页?
2.一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?
3.小明和小刚的体重和是160斤,平均体重多少斤?
师:上述1、2两题都是把一个数平均分成几份,实际每一份都一样多,而第3题是把两个数的和平均分成两份,每份不一定是实际数.所以,“求几个数的平均数”与“把一个数平均分成几份”,是有区别的.
二、探究新知.
1.引入新课.
以前,我们学习过“把一个数平均分成几份,求每份是多少”的应用题,也就是“平均分”的问题.
今天我们共同研究一下“求平均数”问题.(板书课题:求平均数)
2.教学例2.
(1)出示例2.用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?
(2)组织讨论:你怎样理解“水面的平均高度”?
(3)学生汇报讨论结果,教师进一步明确:所谓“平均高度”,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,水面高度同样的高度值.
(4)学生操作.
请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四“杯”水的水面高度相等.
(5)学生汇报操作结果,一般出现两种方法.
第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用
16÷4=4厘米,得出每“杯”水水面的平均高度是4厘米.
第二种:直接移多补少.从6厘米中取2厘米放入2厘米杯中,从5厘米杯中取1厘米放入3厘米杯中,就可直接得到4杯水面高度相同的水,水面高度都是4厘米.这说明原来4杯水水面的平均高度是4厘米.
(6)师:通过同学们的操作,我们得到了这4杯水水面的平均高度是4厘米.但这里有一个问题,操作时,我们使水杯的水面实际高度发生了变化,平均高度得到了,而原来4杯水水面高度却发生了变化.而现实生活中,很多求平均数的情况是不允许改变原值的.例如:高个身高180厘米,矮个身高140厘米,两人的平均身高是160厘米.并不是把高个的身体削下一部分来,接在矮个身体上,使两人身高相等.由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的.如果我们不通过操作,直接通过计算,能不能求出这4杯水水面的平均高度呢?怎样计算方便呢?
(7)引导学生列式计算.
(6+3+5+2)÷4
=16÷4
=4(厘米)
答:这4个杯子水面的平均高度是4厘米.
小结:通过上题的计算,进一步明确:应先相加求出高度总和,再用高度和除以杯子数,得到平均高度.
(8)看例2与复习题,两题的结果都是4厘米,所表示的意义相同吗?
明确:复习题中,4厘米是平均分的结果,即每个杯子水面的实际高度就是4厘米;例2是求的平均数,4厘米表示的是各杯子水面高度的平均值,而每个杯中水面的实际高度并不一定是4厘米,它们的实际高度并不要求发生变化.
(9)反馈练习.
小强投掷三次垒球,每次的成绩分别是:28米、29米、27米.求平均成绩.
正在阅读:
人教版五年级下册数学《求平均数》教案范文09-29
六年级作文这就是幸福600字10-27
[小学生作文二十年后的家乡的变化]小学生作文家乡的变化真大10-31
感恩祖国感恩母亲800字03-12
马来西亚留学需要高考成绩吗?01-04
2016外贸跟单员考试真题及答案06-07