【#初中奥数# 导语】奥数能够有效地培养学生用数学观点看待和处理实际问题的能力,提高学生用数学语言和模型解决实际问题的意识和能力,提高学生揭示实际问题中隐含的数学概念及其关系的能力等等。使学生能够在创造性思维过程中,看到数学的实际作用,感受到数学的魅力,增强学生对数学美的感受力。以下是®文档大全网为您整理的相关资料,希望对您有所帮助。
【篇一】
1、小王、小李同住一楼中,两人从甲去上半,小王先走20分钟后小李才出发。已知小李的速度是小王速度的3倍,则小李出发后多少时间能追上甲?
采用假设:假设小王速度是1,小李速度就是3,这样小王走20分钟后走了20,20就是追及路程,20÷(3-1)=10(分钟)。当然,小王和小李的速度可以任意假设,只要成3倍关系都可以。
2、甲每分钟行80米,乙每分钟行50米,在下午1:30分时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在几点的时候追上乙?
相背行了6分钟,两人相距(80+50)×6=780(米),这其实就是需要追及的路程。780÷(80-50)=26(分钟)……追及时间,这样1时30分+6分+26分=2时2分追上乙。
3、某学校组织学生去长城春游,租用了一辆大客车,从学校到长城相距150千米。大客车和学校的一辆小汽车同时从学校出发,当小汽车到长城时,大客车还有30千米。已知大客车每小时行60千米,则小汽车比大客车快多少千米?
大客车实际行驶了150-30=120(千米),120÷60=2(小时),实际行驶了2小时(包括小汽车也是行驶这个时间),150÷2=75(千米)……小汽车行驶速度,75-60=15(千米)……速度差
4、甲乙两人从周长为800米的正方形水池相对的两个顶点同时出发逆时针行走,乙在前,甲在后。甲每分钟走50米,乙每分钟走46米,出发多长时间甲和乙在同一点上?
两人在相对的两个顶点上,实际两人相距(800÷4)×2=400(米),这也是追及路程,400÷(50-46)=100(分钟)
【篇二】
1、甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?
18÷(14-5)=2(小时)
2、哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?
(50×10)÷(70-50)=25(分钟)
3、小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?
(16-5)×2=22(千米)
4、一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?
40×5÷(90-40)=4(小时)……追及时间
40×(5+4)=360(千米)……汽车速度×汽车时间=汽车路程
360×2=720(千米)……全程
5、一列慢车在早晨6:30以每小时40千米的速度由甲城开往乙城,另一列快车在早晨7:30以每小时56千米的速度也由甲城开往乙城。铁路部门规定,向相同方向的两列火车之间的距离不能小于8千米。那么,这列慢车最迟应该在什么时候停车让快车超过?
追及路程:(7:30-6:30)×40=40(千米)40-8=32(千米)
32÷(56-40)=2(小时)……追及时间
7:30+2小时=9点30分
2019小升初奥数追及问题应用题及答案.doc