(1)热传导的方向性
热传递的过程是有方向性的,热量会自发地从高温物体传给低温物体,而不会自发地从低温物体传给高温物体。
(2)热力学第二定律的两种常见表述
①不可能使热量由低温物体传递到高温物体,而不引起其他变化。
②不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。
(3)永动机不可能制成
①第一类永动机不可能制成:不消耗任何能量,却可以源源不断地对外做功,这种机器被称为第一类永动机,这种永动机是不可能制造成的,它违背了能量守恒定律。
②第二类永动机不可能制成:没有冷凝器,只有单一热源,并从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化的热机叫做第二类永动机。第二类永动机不可能制成,它虽然不违背能量守恒定律,但违背了热力学第二定律。
(1)分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。温度是物体分子热运动的平均动能的标志。
(2)分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。分子势能随着物体的体积变化而变化。分子间的作用表现为引力时,分子势能随着分子间的距离增大而增大。分子间的作用表现为斥力时,分子势能随着分子间距离增大而减小。对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。
(3)物体的内能:物体里所有的分子的动能和势能的总和叫做物体的内能。任何物体都有内能,物体的内能跟物体的温度和体积有关。
(4)物体的内能和机械能有着本质的区别。物体具有内能的同时可以具有机械能,也可以不具有机械能。
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量m,天体半径r,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=gg=g≈9.8m/s2
高空物体的重力加速度:mg=gg=g<9.8m/s2
4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是的。
由mg=mv2/r或由==7.9km/s
5.开普勒三大定律
6.利用万有引力定律计算天体质量
7.通过万有引力定律和向心力公式计算环绕速度
8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度
(1)定义:导体两端电压与通过导体电流的比值,叫做这段导体的电阻。
(2)公式:R=U/I(定义式)
说明:
A、对于给定导体,R一定,不存在R与U成正比,与I成反比的关系,R只跟导体本身的性质有关。
B、这个式子(定义)给出了测量电阻的方法——伏安法。
C、电阻反映导体对电流的阻碍作用
二、欧姆定律
(1)定律内容:导体中电流强度跟它两端电压成正比,跟它的电阻成反比。
(2)公式:I=U/R
(3)适应范围:一是部分电路,二是金属导体、电解质溶液。
三、导体的伏安特性曲线
(1)伏安特性曲线:用纵坐标表示电流I,横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。
(2)线性元件和非线性元件
线性元件:伏安特性曲线是通过原点的直线的电学元件。
非线性元件:伏安特性曲线是曲线,即电流与电压不成正比的电学元件。
四、导体中的电流与导体两端电压的关系
(1)对同一导体,导体中的电流跟它两端的电压成正比。
(2)在相同电压下,U/I大的导体中电流小,U/I小的导体中电流大。所以U/I反映了导体阻碍电流的性质,叫做电阻(R)
(3)在相同电压下,对电阻不同的导体,导体的电流跟它的电阻成反比。
(1)定义:在电源内部,非静电力所做的功W与被移送的电荷q的比值叫电源的电动势。
(2)定义式:E=W/q
(3)单位:伏(V)
(4)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。
二、电源(池)的几个重要参数
(1)电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。
(2)内阻(r):电源内部的电阻。
(3)容量:电池放电时能输出的总电荷量。其单位是:A·h,mA·h.
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动){L:有效长度(m)}
3)Em=nBSω(交流发电机的感应电动势){Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性。
①判断物质是晶体还是非晶体的主要依据是有无固定的熔点。
②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)。
2、单晶体多晶体
如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)。
如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。
3、晶体的微观结构:
固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规则振动。
晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。
4、表面张力
当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力,如露珠。
(1)作用:液体的表面张力使液面具有收缩的趋势。
(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直。
(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
1.定义:电流流过导体产生的热量跟电流的平方、导体的电阻和通电时间成正比。
2.意义:电流通过导体时所产生的电热。
3.适用条件:任何电路。
二、电阻定律
1.电阻定律:在一定温度下,导体的电阻与导体本身的长度成正比,跟导体的横截面积成反比。
2.意义:电阻的决定式,提供了一种测电阻率的方法。
3.适用条件:适用于粗细均匀的金属导体和浓度均与的电解液。
三、欧姆定律
1.欧姆定律:导体中电流I跟导体两端的电压U成正比,跟它的电阻R成反比。
2.意义:电流的决定式,提供了一种测电阻的方法。
3.适用条件:金属、电解液(对气体不适用)。适用于纯电阻电路。
1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:
静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。
2、利用高压静电产生的电场,应用有:
静电保鲜、静电灭菌、作物种子处理等。
3、利用静电放电产生的臭氧、无菌消毒等
雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。
正在阅读:
高二物理笔记复习必修三10-08
如果有那样一种遇见作文800字07-13
北京昌平2024年第一次普通高中学业水平合格性考试报名时间:2023年11月6日-10日10-25
广东工业大学2021年夏季高考招生章程07-22
格林童话故事大全(5篇)09-25
学员考核情况表自我鉴定03-30
庆祝世界读书日的日记500字11-25
不充电的后果作文600字05-09
关于中秋节的话题作文700字:中秋节的晚上话题作文11-30
2019年甘肃酒泉中考政治真题11-07
写一个同学的特点作文400字09-09