高三下册数学说课稿模板

时间:2023-03-09 23:41:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
【#高三# 导语】作为一名教师,编写说课稿是必不可少的,借助说课稿可以提高教学质量,取得良好的教学效果。以下是®文档大全网整理的《高三下册数学说课稿模板》希望能够帮助到大家。
15378615269243284.jpg

1.高三下册数学说课稿模板 篇一


  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义来解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

  四、教学目标

  1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义__问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3、借助多媒体辅助教学,激发学习数学的兴趣。

2.高三下册数学说课稿模板 篇二


  一、教材分析

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

  二、教学目标

  1、学习目标

  (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  2、能力目标

  (1)能够把一句话一个事件用集合的方式表示出来。

  (2)准确理解集合与及集合内的元素之间的关系。

  3、情感目标

  通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了解到数学于生活中。

  三、教学重点与难点

  重点集合的基本概念与表示方法;

  难点运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

  四、教学方法

  (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

  (2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

  五、学习方法

  (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象的综合能力。

  (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培优扶差,满足不同。”

3.高三下册数学说课稿模板 篇三


  一、教材分析

  教材的地位和作用

  期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

  教学重点与难点

  重点:离散型随机变量期望的概念及其实际含义。

  难点:离散型随机变量期望的实际应用。

  [理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

  二、教学目标

  [知识与技能目标]

  通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

  会计算简单的离散型随机变量的期望,并解决一些实际问题。

  [过程与方法目标]

  经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

  通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

  [情感与态度目标]

  通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

  三、教法选择

  引导发现法

  四、学法指导

  “授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

4.高三下册数学说课稿模板 篇四


  一、教材分析:

  "数列"是中学数学的重要内容之一。不仅在历年的高考中占有一定的比重,而且在实际生活中也经常要用到数列的一些知识。例如:储蓄、分期付款中的有关计算就要用到数列知识。

  就本节课而言,在给出数列的基本概念之后,结合例题,指出数列可以看作定义域为正整数集(或它的有限子集)的函数。因此,本节课的内容,一方面是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面也可以为后面学习等差数列、等比数列的通项、求和等知识打下铺垫。所以本节课在教材中起到了"承上启下"的作用,必须讲清、讲透。

  二、教学目标:

  根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标。

  1、知识目标:

  (1)形成并掌握数列及其有关概念,识记数列的表示和分类,了解数列通项公式的意义。

  (2)理解数列的通项公式,能根据数列的通项公式写出数列的任意一项。对比较简单的数列,使学生能根据数列的前几项观察归纳出数列的通项公式,并通过数列与函数的比较加深对数列的认识。

  2、能力目标:

  培养学生观察、归纳、类比、联想等分析问题的能力,同时加深理解数学知识之间相互渗透性的思想。

  3、情感目标:

  通过渗透函数、方程思想,培养学生的思维能力,使学生在民主、和谐的活动中感受学习的乐趣。通过介绍数列与函数间存在的特殊到一般关系,向学生进行辩证唯物主义思想教育

  三、重点、难点:

  1、教学重点

  理解数列的概念及其通项公式,加强与函数的联系,并能根据通项公式写出数列中的任意一项。

  2、教学难点

  根据数列前几项的特点,通过多角度、多层次的观察和分析,归纳出数列的通项公式。

  四、教法学

  本节课以"问题情境——归纳抽象——巩固训练"的模式展开,引导学生从知识和生活经验出发,提出问题并与学生共同探索、讨论解决问题的方法,让学生经历知识的形成过程,从而理解更加透彻。

  现代教学观明确指出:教师是主导,学生是主体,学生应成为学习的主人。根据本节内容及学生的认知规律,针对不同内容应选择不同的方法。对于国际象棋棋盘麦粒采用电脑动画演示,增强感性认识;所举的引例及数列的函数定义,可采用探索发现法;对通项公式及数列的分类等概念采用指导阅读法;对于难题(根据数列的前几项写出一个通项公式)采用讲练结合法。

  "授人以鱼,不如授人以渔",平时在教学中教师应不断指导学生学会学习。本节课从学生实际出发,创设情境,引导学生观察、分析,探索发现,归纳总结,培养学生积极思维的品质,加强主动学习的能力。

  为了有效地突出重点,突破难点,增大课堂容量,提高课堂效率,本节课将常规教学手段与现代教学手段相结合,将引例、例题、练习等实物投影。

5.高三下册数学说课稿模板 篇五


  一、教材分析:

  1、教材的地位与作用。

  本节内容是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。

  在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下面学习求比较复杂的情况的概率打下基础。

  2、重点与难点。

  重点:对概率意义的理解,通过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。

  难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。

  二、目的分析:

  知识与技能:掌握用频率预测概率和用列举法求概率方法。

  过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

  情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。

  三、教法、学法分析:

  引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。

本文来源:https://www.wddqw.com/w76m.html