高二数学选择性必修一知识点笔记

时间:2023-01-28 22:20:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
【#高二# 导语】数学被很多学生认为是一门很难的学科,高中数学更是如此,®文档大全网为各位同学整理了《高二数学选择性必修一知识点笔记》,希望对你的学习有所帮助!
7 (6).jpg

1.高二数学选择性必修一知识点笔记 篇一


  (1)总体和样本:

  ①在统计学中,把研究对象的全体叫做总体.

  ②把每个研究对象叫做个体.

  ③把总体中个体的总数叫做总体容量.

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.

  (2)简单随机抽样,也叫纯随机抽样。

  就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  (3)简单随机抽样常用的方法:

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  (4)抽签法:

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查

2.高二数学选择性必修一知识点笔记 篇二


  一、导数的应用

  1.用导数研究函数的最值

  确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

  2.生活中常见的函数优化问题

  1)费用、成本最省问题

  2)利润、收益问题

  3)面积、体积最(大)问题

  二、推理与证明

  1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

  2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

  三、不等式

  对于含有参数的一元二次不等式解的讨论

  1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

  2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

3.高二数学选择性必修一知识点笔记 篇三


  解不等式

  1.解不等式问题的分类

  (1)解一元一次不等式。

  (2)解一元二次不等式。

  (3)可以化为一元一次或一元二次不等式的不等式。

  ①解一元高次不等式;

  ②解分式不等式;

  ③解无理不等式;

  ④解指数不等式;

  ⑤解对数不等式;

  ⑥解带绝对值的不等式;

  ⑦解不等式组.

  2.解不等式时应特别注意下列几点:

  (1)正确应用不等式的基本性质。

  (2)正确应用幂函数、指数函数和对数函数的增、减性。

  (3)注意代数式中未知数的取值范围。

4.高二数学选择性必修一知识点笔记 篇四


  1.两角和与差的正弦、余弦和正切公式:

  重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

  难点:两角差的余弦公式的探索和证明。

  2.简单的三角恒等变换:

  重点:掌握三角变换的内容、思路和方法,体会三角变换的特点。

  难点:公式的灵活应用。

  三角函数几点说明:

  1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。

  2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算。

  3.已知三角函数值求角问题,达到课本要求即可,不必拓展。

  4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和最值。

  5.积化和差、和差化积、半角公式只作为练习,不要求记忆。

  6.两角和与差的正弦、余弦和正切公式。

5.高二数学选择性必修一知识点笔记 篇五


  概率性质与公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果。

  贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

  如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。

  (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。

本文来源:https://www.wddqw.com/y1Um.html