1、三角形行列式的值,等于对角线元素的乘积。计算时,一般需要多次运算来把行列式转换为上三角型或下三角型。
2、交换行列式中的两行(列),行列式变号。
3、行列式中某行(列)的公因子,可以提出放到行列式之外。
4、行列式的某行乘以a,加到另外一行,行列式不变,常用于消去某些元素。
5、若行列式中,两行(列)完全一样,则行列式为0;可以推论,如果两行(列)成比例,行列式为0。
6、行列式展开:行列式的值,等于其中某一行(列)的每个元素与其代数余子式乘积的和;但若是另一行(列)的元素与本行(列)的代数余子式乘积求和,则其和为0。
7、在求解代数余子式相关问题时,可以对行列式进行值替代。
8、克拉默法则:利用线性方程组的系数行列式求解方程。
9、齐次线性方程组:在线性方程组等式右侧的常数项全部为0时,该方程组称为齐次线性方程组,否则为非齐次线性方程组。齐次线性方程组一定有零解,但不一定有非零解。当D=0时,有非零解;当D!=0时,方程组无非零解。
内切圆半径为6分之根号3乘以a。假设等边三角形的边长为a,那么长的一半为a/2,根据勾股定容理,所以三角形的高是√[a2-(a/2)2]=√3a/2。又因为是等边三角形,所以三角形的四心合一。分高为2:1,其中长的是外接圆半径,短的是内切圆半径。所以,内切圆半径是6分之根号3乘以a。
一、等边三角形内切圆相关知识
1、与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形,三角形的内心是三角形三条角平分线的交点。
2、三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆),且内切圆圆心定在三角形内部。
3、在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
4、内切圆的半径为r=2S/C,当中S表示三角形的面积,C表示三角形的周长。
5、面积法;1/2lr(l周长)用于任意三角形。
二、什么是内切圆
与多边形各边都相切的圆叫做多边形的内切圆。特殊地,与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形三条角平分线的交点。
三角形一定有内切圆,其他的图形不一定有内切圆,且内切圆圆心定在三角形内部。
如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di
a=c,b=d。特殊地,a,b∈R时,a+bi=0
a=0,b=0.
复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
复数相等特别提醒:
一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
解复数相等问题的方法步骤:
(1)把给的复数化成复数的标准形式;
(2)根据复数相等的充要条件解之。
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
【公式二】
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
【公式三】
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
【公式四】
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
【公式五】
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
【公式六】
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
正在阅读:
高三必修四数学知识点整理12-15
[初三下册语文课件免费下载]初三下册语文课件:诗两首03-17
2018湖南省株洲攸县公开招聘事业单位工作人员公告【115人】05-29
2019广西北海市归国华侨联合会招聘公告03-14
难忘的暑假作文400字09-04