初中二年级北师大版数学上册,初中二年级北师大版数学期中考试试卷及答案

副标题:初中二年级北师大版数学期中考试试卷及答案

时间:2024-02-29 17:36:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

#初二# 导语:】本篇文章是®文档大全网为您整理的初中二年级北师大版数学中考试试卷及答案,欢迎大家查阅。

  一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确答案填在后面表格中相应的位置)

  1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是

  2、下列实数,,,,,0.1,,其中无理数有

  A、2个B、3个C、4个D、5个

  3.实数范围内有意义,则x的取值范围是()

  A、x>1B、x≥lC、x<1D、x≤1

  4、等腰三角形一边长为2,周长为5,则它的腰长为

  A、2B、5C、1.5D、1.5或2

  5.下列三角形中,可以构成直角三角形的有

  A.三边长分别为2,2,3B.三边长分别为3,3,5

  C.三边长分别为4,5,6D.三边长分别为1.5,2,2.5

  6.到△ABC的三条边距离相等的点是△ABC的

  A.三条中线的交点B.三条角平分线的交点

  C.三条高的交点D.三条边的垂直平分线的交点

  7、如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于

  A.8B.6C.4D.5

  8、如图,数轴上A、B两点表示的数分别为和,点B关于点A的对称点为C,则点C所表示的数为A.B.C.D.

  9、已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是

  A.含30°角的直角三角形B.顶角是30°的等腰三角形

  C.等边三角形D.等腰直角三角形

  10、如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为

  A.2B.C.2D.

  题号12345678910

  答案

  二、填空题(本大题共8小题,每小题2分,共16分,把答案填写在相应位置上)

  11、近似数3.20×106精确到位

  12、如图,则小正方形的面积S=

  13、若a<<b,且a,b为连续正整数,则b2﹣a2=

  14、实数、在数轴上的位置如图所示,

  化简:=

  15、已知,则=

  16、等腰三角形的一腰上的高与另一腰的夹角是40°,则它的顶角是

  17、如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB,AC=8cm,AE=4cm,则DE的长是

  18、如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=8,AB=CD=17.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,DE的长为.

  三、解答题(本大题共10题,共64分,请写出必要的计算过程或推演步骤)

  19、计算:(每小题4分,共8分)

  (1).(2)

  20、求下列各式中的(每小题3分,共6分)

  (1);(2)(2x+10)=-27.

  21、已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y的平方根(本题4分)

  22、如图,AD是△ABC的角平分线,点E在AB上,且AE=AC,EF∥BC交AC于点F.

  求证:EC平分∠DEF.(本题5分)

  23、已知,如图△ABC中,AB=AC,D点在BC上,且BD=AD,DC=AC(本题6分)

  (1)写出图中两个等腰三角形

  (2)求∠B的度数.

  24、(1)如图1,利用网格线用三角尺画图,在AC上找一点P,使得P到AB、BC的距离相等;(本题3分)

  (2)图2是4×5的方格纸,其中每个小正方形的边长均为1cm,每个小正方形的顶点称为格点.请在图2的方格纸中画出一个面积为10cm2的正方形,使它的顶点都在格点上;(本题3分)

  25、如图,一架10米长的梯子AB,斜靠在一竖直的墙AC上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端沿墙下滑1米(本题6分)

  (1)求它的底端滑动多少米?

  (2)为了防止梯子下滑,保证安全,小强用一根绳子连结在墙角C与梯子的中点D处,你认为这样效果如何?请简要说明理由。

  26、如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,(1)求证:AE=BE(本题7分)

  (2)求AB的长

  (2)若点P是AC上的一个动点,则△BDP周长的最小值=

  27、在△ABC中,AB=8,BC=10,AC=6,动点P从点C出发,沿着CB运动,速度为每秒2个单位,到达点B时运动停止,设运动时间为t秒,请解答下列问题:(本题8分)

  (1)求BC上的高;

  (2)当t为何值时,△ACP为等腰三角形?

  28、如图,在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC时(本题8分)

  (1)若CE⊥BD于E,①∠ECD=0;

  ②求证:BD=2EC;

  (2)如图,点P是射线BA上A点右边一动点,以CP为斜边作等腰直角△CPF,其中∠F=90°,点Q为∠FPC与∠PFC的角平分线的交点.当点P运动时,点Q是否一定在射线BD上?若在,请证明,若不在;请说明理由.

  题号12345678910

  答案ABBDDBBADC

  11、万;12、30;13、7;14、-b;15、4;16、5001300;17、3;

  18、2或3219、(1);(2);20、(1)(2);

  21、∵5x﹣1的算术平方根为3,

  ∴5x﹣1=9,

  ∴x=2,(1分)

  ∵4x+2y+1的立方根是1,

  ∴4x+2y+1=1,

  ∴y=﹣4,(2分)

  4x﹣2y=4×2﹣2×(﹣4)=16,

  ∴4x﹣2y的平方根是±4.(4分)

  22、∵AE=AC,AD平分∠BAC

  ∴AD垂直平分CE(三线合一)

  ∴CD=ED(2分)

  ∴∠DEC=∠DCE(3分)

  ∵EF∥BC

  ∴∠FEC=∠DCE

  ∴∠DEC=∠FEC

  ∴EC平分∠DEF(5分)

  23、(1)△ABD,△ABC,△ACD(只要写出二个)

  (2)设∠B=x0∵BD=AD,∴∠DAB=∠B=x0(2分)

  ∵AB=AC∴∠C=∠B=x0

  又∵AC=DC∴∠CAD=∠ADC=2x0

  ∵∠CAD+∠ADC+∠C=1800

  ∴2x+2x+x=1800∴x=360

  ∴∠B=360(4分)

  24、解:(1)如图所示:(2)如图2所示:

  25、(1)△ABC中,∠ACB=90°,AB=10米,AC=8米,由勾股定理得BC=6米……1′

  △A1BC1中,∠C=90°,A1B1=10,A1C=7,由勾股定理得B1C=……2′

  BB1=B1C-BC=-7

  答:它的底端滑动(-7)米。……4′

  (2)并不稳当,根据直角三角形斜边上的中线等于斜边的一半,梯子若下滑,绳子的长度不变,并不拉伸,对梯子无拉力作用(只要大致说对就得2分)

  26、解:(1)∵∠ACB=90°,∠A=30°

  ∴∠ABC=900-∠A=600

  ∵BE平分∠ABC

  ∴∠ABE=300

  ∴∠ABE=∠A

  ∴AE=BE…………………………2′

  (2)∵ED⊥AB,∠A=30°,

  ∴ED=AE=3cm………………3′

  ∴,

  ∵AE=BE,DE⊥AB

  ∴AB=2AD=………………5′

  (3)9+……………………7′

  27、解:(1)过点A作AD⊥BC于点D,

  ∵AB2+AC2=100BC2=100

  ∴AB2+AC2=BC2

  ∴∠BAC=900即△ABC为直角三角形,……1′

  ∴

  ∴AD=4.8……………………2′

  (2)当AC=PC时,

  ∵AC=6,

  ∴AC=PC=6,

  ∴t=3秒;……………………4′

  当AP=AC时,过点A作AD⊥BC于点D,

  PD=DC

  CD==3.6,

  ∴PC=7.2,

  ∴t=3.6秒;………………6′

  当AP=PC时,

  ∠PAC=∠C

  ∵∠BAC=900

  ∴∠BAP+∠PAC=900

  ∠B+∠C=900

  ∴∠BAP=∠B

  ∴PB=PA

  ∴PB=PC=5

  ∴t=2.5

  综上所述,t=3秒或3.6秒或2.5秒.………………8′

  28、解:(1)∠ECD=22.5°;…………2′

  ②延长CE交BA的延长线于点G,如图1:

  ∵BD平分∠ABC,CE⊥BD,

  ∴CE=GE,…………………………3′

  在△ABD与△ACG中,

  ∴△ABD≌△ACG(AAS),

  ∴BD=CG=2CE;………………4′

  (2)点Q一定在射线BD上,理由如下

  连接CQ,过点Q作QM⊥BP,QN⊥BC,垂足为M、N

  ∵QF为∠PFC的角平分线,△CPF为等腰直角三角形

  ∴QF为PC的垂直平分线

  ∴PQ=QC

  ∵Q为∠FPC与∠PFC的角平分线的交点

  ∴CQ平分∠FCP

  ∵△CPF为等腰直角三角形

  ∴∠FCP=∠FPC=450

  ∴∠QCP=∠QPC=22.50

  ∴∠PQC=1350………………5′

  在四边形QCBP中,

  QM⊥BP,QN⊥BC,∠ABC=450

  ∴∠MQC=1350

  ∴∠MQC=∠PQC………………6′

  ∴∠NQC=∠MQP

  又∵QC=QPQM⊥BP,QN⊥BC

  ∴可证△QPM≌△QCN

  ∴QM=QN……………………7′

  又∵QM⊥BP,QN⊥BC

  ∴点Q一定在射线BD上…………8′

初中二年级北师大版数学中考试试卷及答案.doc

本文来源:https://www.wddqw.com/7uII.html