【#小学奥数# 导语】奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。以下是©文档大全网整理的《小学生奥数专项题型例题及解答》相关资料,希望帮助到您。
小学生奥数专项题型例题及解答篇一
相遇问题:【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1:南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解:392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2:小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
解:“第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2
相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。
例3:甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解“两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,
相遇时间=(3×2)÷(15-13)=3(小时)
两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
小学生奥数专项题型例题及解答篇二
倍比问题:【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量
【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。
例1:100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
解:(1)3700千克是100千克的多少倍?3700÷100=37(倍)
(2)可以榨油多少千克?40×37=1480(千克)
列成综合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。
例2:今年植树节这天,某小学300生共植树400棵,照这样计算,全县48000生共植树多少棵?
解:(1)48000名是300名的多少倍?48000÷300=160(倍)
(2)共植树多少棵?400×160=64000(棵)
列成综合算式400×(48000÷300)=64000(棵)答:全县48000生共植树64000棵。
例3:凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?
解(1)800亩是4亩的几倍?800÷4=200(倍)
(2)800亩收入多少元?11111×200=2222200(元)
(3)16000亩是800亩的几倍?16000÷800=20(倍)
(4)16000亩收入多少元?2222200×20=44444000(元)
答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。
小学生奥数专项题型例题及解答篇三
追及问题:【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1:好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解:(1)劣马先走12天能走多少千米?75×12=900(千米)
(2)好马几天追上劣马?900÷(120-75)=20(天)
列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。
例2:小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解:小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是
(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米。
例3:我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解:敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。由此推知
追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。
例4:一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解:这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为16×2÷(48-40)=4(小时)
所以两站间的距离为(48+40)×4=352(千米)
列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)
答:甲乙两站的距离是352千米。
例5:兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
解:要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的距离为90×12-180=900(米)答:家离学校有900米远。
例6孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。
解手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。所以
步行1千米所用时间为1÷[9-(10-5)]=0.25(小时)=15(分钟)
跑步1千米所用时间为15-[9-(10-5)]=11(分钟)
跑步速度为每小时1÷11/60=1×60/11=5.5(千米)查字典返回查字典首页>>
答:孙亮跑步速度为每小时5.5千米。
小学生奥数专项题型例题及解答.doc