【#初中奥数# 导语】奥数能够有效地培养学生用数学观点看待和处理实际问题的能力,提高学生用数学语言和模型解决实际问题的意识和能力,提高学生揭示实际问题中隐含的数学概念及其关系的能力等等。使学生能够在创造性思维过程中,看到数学的实际作用,感受到数学的魅力,增强学生对数学美的感受力。以下是®文档大全网为您整理的相关资料,希望对您有所帮助。
1.下面给出的四对单项式中,是同类项的一对是()
A.x2y与-3x2z
B.3.22m2n3与n3m2
C.0.2a2b与0.2ab2
D.11abc与ab
答案:B
解析:字母相同,并且相同字母的指数也相同的两个式子叫同类项。
2.(x-1)-(1-x)+(x+1)等于()
A.3x-3
B.x-1
C.3x-1
D.x-3
答案:C
解析:(x-1)-(1-x)+(x+1)
=x-1-1+x+x+1=3x-1,选C。
3.两个10次多项式的和是()
A.20次多项式
B.10次多项式
C.100次多项式
D.不高于10次的多项式
答案:D
解析:多项式x10+x与-x10+x2之和为x2+x是个次数低于10次的多项式,因此排除了A、B、C,选D。
4.若a+1<0,则在下列每组四个数中,按从小到大的顺序排列的一组是()
A.a,-1,1,-a
B.-a,-1,1,a
C.-1,-a,a,1
D.-1,a,1,-a
答案:A
解析:由a+1<0,知a<-1,所以-a>1。于是由小到大的排列次序应是a<-1<1<-a,选A。
5.a=-123.4-(-123.5),b=123.4-123.5,c=123.4-(-123.5),则()
A.c>b>a
B.c>a>b
C.a>b>c
D.b>c>a
答案:B
解析:易见a=-123.4+123.5=0.1,b=123.4-123.5<0,c=123.4-(-123.5)>123.4>a,所以b
6.若a<0,b>0,且|a|<|b|,那么下列式子中结果是正数的是()
A.(a-b)(ab+a)
B.(a+b)(a-b)
C.(a+b)(ab+a)
D.(ab-b)(a+b)
答案:A
因为a<0,b>0.所以|a|=-a,|b|=b.由于|a|<|b|得-a0,a-b<0。ab+a<0,ab-b<0。所以应有(a-b)(ab+a)>0成立,选A。
7.从2a+5b减去4a-4b的一半,应当得到()
A.4a-b
B.b-a
C.a-9b
D.7b
答案:D
解析:=2a+5b-2a+2b=7b,选D。
8.a,b,c,m都是有理数,并且a+2b+3c=m,a+b+2c=m,那么b与c()
A.互为相反数
B.互为倒数
C.互为负倒数
D.相等
答案:A
解析:因为a+2b+3c=m=a+b+2c,所以b+c=0,即b,c互为相反数,选A。
9.张梅写出了五个有理数,前三个有理数的平均值为15,后两个有理数的平均值是10,那么张梅写出的五个有理数的平均值是()
A.5
B.8
C.12
D.13
答案:D
解析:前三个数之和=15×3,后两个数之和=10×2。所以五个有理数的平均数为(45+20)÷5=13,选D。
填空题
1.2+(-3)+(-4)+5+6+(-7)+(-8)+9+10+(-11)+(-12)+13+14+15=______。
答案:29
解析:前12个数,每四个一组,每组之和都是0.所以总和为14+15=29。
2.若P=a2+3ab+b2,Q=a2-3ab+b2,则代入到代数式P-[Q-2P-(-P-Q)]中,化简后,是______。
答案:12ab。
解析:因为P-[Q-2P-(-P-Q)]
=P-Q+2P+(-P-Q)
=P-Q+2P-P-Q
=2P-2Q=2(P-Q)
以P=a2+3ab+b2,Q=a2-3ab+b2代入,
原式=2(P-Q)
=2[(a2+3ab+b2)-(a2-3ab+b2)]
=2(6ab)=12ab。
3.小华写出四个有理数,其中每三数之和分别为2,17,-1,-3,那么小华写出的四个有理数的乘积等于______。
答案:-1728。
解析:设这四个有理数为a、b、c、d,则
a+b+c=2
a+b+d=17
a+c+d=-1
b+c+d=-3
有3(a+b+c+d)=15,即a+b+c+d=5。
分别减去每三数之和后可得这四个有理数依次为3,-12,6,8,所以,这四个有理数的乘积=3×(-12)×6×8=-1728。
5.一种小麦磨成面粉后,重量要减少15%,为了得到4250公斤面粉,至少需要______公斤的小麦。
答案:5000
解析:设需要x公斤的小麦,则有
x(x-15%)=4250
x=5000
精选初中奥数考试真题及答案.doc