高二下册数学必修二知识点复习

时间:2023-02-11 22:11:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#高二# 导语】直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。另一方面通过自学主动获取知识。能否顺利实现转变,是成绩能否突破的关键。下面是©文档大全网为大家带来的《高二下册数学必修二知识点复习》,希望对你有所帮助!

1.高二下册数学必修二知识点复习


  函数的单调性、奇偶性、周期性

  单调性:定义:注意定义是相对与某个具体的区间而言。

  判定方法有:定义法(作差比较和作商比较)

  导数法(适用于多项式函数)

  复合函数法和图像法。

  应用:比较大小,证明不等式,解不等式。

  奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;

  f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

  判别方法:定义法,图像法,复合函数法

  应用:把函数值进行转化求解。

  周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

  其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

  应用:求函数值和某个区间上的函数解析式。

  图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

  常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

  平移变换y=f(x)→y=f(x+a),y=f(x)+b

  注意:

  (ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。

  (ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。

  对称变换y=f(x)→y=f(-x),关于y轴对称

  y=f(x)→y=-f(x),关于x轴对称

  y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称

  y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

  伸缩变换:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

  一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;

2.高二下册数学必修二知识点复习

  一、基础知识

  (1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.

  (2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).

  圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.

  (3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.

  二、重难点与易错点

  重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.

  (1)区分逆命题与命题的否定;

  (2)理解充分条件与必要条件;

  (3)椭圆、双曲线与抛物线的定义;

  (4)椭圆与双曲线的几何性质,特别是离心率问题;

  (5)直线与圆锥曲线的位置关系问题;

  (6)直线与圆锥曲线中的弦长与面积问题;

  (7)直线与圆锥曲线问题中的参数求解与性质证明;

  (8)轨迹与轨迹求法;

  (9)运用空间向量求空间中的角度与距离;

  (10)立体几何中的动态问题探究.

3.高二下册数学必修二知识点复习

  一、变量间的相关关系

  1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.

  2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.

  二、两个变量的线性相关

  从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.

  当r>0时,表明两个变量正相关;

  当r<0时,表明两个变量负相关.

  r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.

  三、解题方法

  1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.

  2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.

  3.由相关系数r判断时|r|越趋近于1相关性越强.

4.高二下册数学必修二知识点复习


  1、学会三视图的分析:

  2、斜二测画法应注意的地方:

  (1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);

  (2)平行于x轴的线段长不变,平行于y轴的线段长减半.

  (3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

  3、表(侧)面积与体积公式:

  ⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

  ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

  ⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

  ⑷球体:①表面积:S=;②体积:V=

  4、位置关系的证明(主要方法):注意立体几何证明的书写

  (1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

  (2)平面与平面平行:线面平行面面平行。

  (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

  5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

  ⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

  ⑵直线与平面所成的角:直线与射影所成的角

5.高二下册数学必修二知识点复习

  1、直线的倾斜角的范围是

  在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;

  2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

  过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

  3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,

  ⑵斜截式:直线在轴上的截距为和斜率,则直线方程为

  4、直线与直线的位置关系:

  (1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0

  5、点到直线的距离公式;

  两条平行线与的距离是

  6、圆的标准方程:.⑵圆的一般方程:

  注意能将标准方程化为一般方程

  7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

  8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交

  9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长

高二下册数学必修二知识点复习.doc

本文来源:https://www.wddqw.com/Eh7m.html