小学五年级整除的概念|小学五年级奥数题数的整除问题【三篇】

副标题:小学五年级奥数题数的整除问题【三篇】

时间:2024-02-13 00:48:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#小学奥数# 导语】天高鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩用好分秒时间,积累点滴知识,解决疑难问题,学会举一反三。以下是©文档大全网为大家整理的 《小学五年级奥数题数的整除问题【三篇】》供您查阅。

【第一篇】

 判断123456789这九位数能否被11整除?
 解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为115,所以11123456789。

【第二篇】

 判断13574是否是11的倍数?
 解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。

  ⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

【第三篇】

 判断3546725能否被13整除?
解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.

小学五年级奥数题数的整除问题【三篇】.doc

本文来源:https://www.wddqw.com/Fy9I.html