【#教育# 导语】新一轮中考复习备考周期正式开始,®文档大全网为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学知识点:分式混合运算法则》,仅供参考!
1)分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简.
2)分式方程的增根问题
(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知
数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现
不适合原方程的根---增根;
(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.
列分式方程基本步骤
①审-仔细审题,找出等量关系。
②设-合理设未知数。
③列-根据等量关系列出方程(组)。
④解-解出方程(组)。注意检验
⑤答-答题。
3)解分式方程的基本步骤
⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)
⑵解整式方程,得到整式方程的解。
⑶检验,把所得的整式方程的解代入最简公分母中:
如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
4)分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
即,(C≠0),其中A、B、C均为整式。分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
5)分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
6)分式的运算:
1.分式的加减法法则:
(1)同分母的分式相加减,分母不变,把分子相加;
(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。
2.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
3.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。
4.对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。
约分的方法和步骤包括:
(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的公约数的积;
(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
7)通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的次幂的所有不同字母的积;
(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;
(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;
(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
8)注意:
(1)分式的约分和通分都是依据分式的基本性质;
(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分.
3.求最简公分母的方法是:
(1)将各个分母分解因式;
(2)找各分母系数的最小公倍数;
(3)找出各分母中不同的因式,相同因式中取次数的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
2018中考数学分式分类汇总.doc正在阅读:
中考数学分式及分式方程计算题-2018中考数学分式分类汇总02-21
2020年天津市河北区卫生健康系统事业单位公开招聘工作人员公告63人【】11-19
初二第二学期期末考试总结1000字06-16
高三话题作文1000字:关于《一座城池》05-26
2019年海南高考时间安排:2019年6月7日-8日10-02
财务工作失误检讨书范文集锦09-22
2019年四川雅安职业技术学院附属医院招聘非编人员公告09-29
2017年度考核表个人工作总结:2017年度个人工作总结五篇04-07
美国投资移民的两种模式09-21
游夫子庙作文600字10-02
2019年企业人力资源工作总结01-11