小学四年级数学定理与公式和知识点_知识点:数学上奇怪的定理(二年级)

副标题:知识点:数学上奇怪的定理(二年级)

时间:2024-08-03 03:40:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#二年级# 导语】数学可以训练你的思维能力,思维方式。当然最重要的是与自己能在社会上生活有关,你想找到好的工作,基本都是和数学都是有关系的。因此从小的学习十分有必要。以下是©文档大全网整理的相关资料,希望对您有所帮助。

  定理:喝醉的酒鬼总能找到回家的路,喝醉的小鸟则可能永远也回不了家。

  假设有一条水平直线,从某个位置出发,每次有50%的概率向左走1米,有50%的概率向右走1米。按照这种方式无限地随机游走下去,最终能回到出发点的概率是多少?答案是100%。在一维随机游走过程中,只要时间足够长,我们最终总能回到出发点。

  现在考虑一个喝醉的酒鬼,他在街道上随机游走。假设整个城市的街道呈网格状分布,酒鬼每走到一个十字路口,都会概率均等地选择一条路(包括自己来时的那条路)继续走下去。那么他最终能够回到出发点的概率是多少呢?答案也还是100%。刚开始,这个醉鬼可能会越走越远,但最后他总能找到回家路。

  不过,醉酒的小鸟就没有这么幸运了。假如一只小鸟飞行时,每次都从上、下、左、右、前、后中概率均等地选择一个方向,那么它很有可能永远也回不到出发点了。事实上,在三维网格中随机游走,最终能回到出发点的概率只有大约34%。

  这个定理是数学家波利亚(GeorgePólya)在1921年证明的。随着维度的增加,回到出发点的概率将变得越来越低。在四维网格中随机游走,最终能回到出发点的概率是19.3%,而在八维空间中,这个概率只有7.3%。

  定理:你永远不能理顺椰子上的毛。

  想象一个表面长满毛的球体,你能把所有的毛全部梳平,不留下任何像鸡冠一样的一撮毛或者像头发一样的旋吗?拓扑学告诉你,这是办不到的。这叫做毛球定理(hairyballtheorem),它也是由布劳威尔首先证明的。用数学语言来说就是,在一个球体表面,不可能存在连续的单位向量场。这个定理可以推广到更高维的空间:对于任意一个偶数维的球面,连续的单位向量场都是不存在的。

  毛球定理在气象学上有一个有趣的应用:由于地球表面的风速和风向都是连续的,因此由毛球定理,地球上总会有一个风速为0的地方,也就是说气旋和风眼是不可避免的。

知识点:数学上奇怪的定理(二年级).doc

本文来源:https://www.wddqw.com/LSh5.html