火车拉汽笛时离这个人1360米。因为声速每秒种340米,所以这个人听见汽笛声时,经过了(1360÷340=)4秒。可见火车行1360米用了(57+4=)61秒,将距离除以时间可求出火车的速度。1360÷(57+1360÷340)=1360÷61≈22(米)
2、一列火车通过360米长的铁路桥用了24秒钟,用同样的速度通过216米长的铁路桥用16秒钟,这列火车长米。
分析:这道题让我们求火车的长度。我们知道:车长=车速×通过时间-桥长。其中“通过时间”和“桥长”都是已知条件。我们就要先求出这道题的解题关键:车速。通过审题我们知道这列火车通过不同长度的两个桥用了不同的时间。所以我们可以利用这两个桥的长度差和通过时间差求出车速。
解答:解:车速:(360-216)÷(24-16)
=144÷8
=18(米),
火车长度:18×24-360=72(米),
或18×16-216=72(米)。
答:这列火车长72米。
故答案为:72。
解答:(120+160)÷(15+20)
=280÷35
=8(秒)
答:两车从车头相遇到车尾相离用8秒钟。
2、一列客车通过860米长的大桥,需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟,求这列客车行驶的速度及车身的长度各多少米。
解:这列客车每秒行驶:
(860-620)÷(45-35)
=240÷10
=24(米)
这列客车的车身长:
24×45-860=1080-860=220(米)
答:这列客车每秒行驶24米,车身长220米。
设列车长为x米
(2700+x)÷3=1000
x=300
列车长300米
2、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?
分析本题是求火车车头与小华相遇时到车尾与小华相遇时经过的时间。依题意,必须要知道火车车头与小华相遇时,车尾与小华的距离、火车与小华的速度和。
解:(1)火车与小华的速度和:15+2=17(米/秒)
(2)相距距离就是一个火车车长:119米
(3)经过时间:119÷17=7(秒)
答:经过7秒钟后火车从小华身边通过。
【解答】这是一道牛吃草问题,是比较复杂的牛吃草问题。把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份,
所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份。
因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份,
所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份。
所以45-30=15天,每亩面积长84-60=24份
所以,每亩面积每天长24÷15=1.6份
所以,每亩原有草量60-30×1.6=12份
第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份
新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛,所以,一共需要38.4+3.6=42头牛来吃。
解法一:设每头牛每周吃1份草。
第一块草地4亩可供24头牛吃6周,
说明每亩可供24÷4=6头牛吃6周。
第二块草地8亩可共36头牛吃12周,
说明每亩草地可供36÷8=9/2头牛吃12周。
所以,每亩草地每周要长(9/2×12-6×6)÷(12-6)=3份
所以,每亩原有草6×6-6×3=18份。
因此,第三块草地原有草18×10=180份,每周长3×10=30份。
所以,第三块草地可供50头牛吃180÷(50-30)=9周
解法二:设每头牛每周吃1份草。我们把题目进行变形。
有一块1亩的草地,可供24÷4=6头牛吃6周,供36÷8=9/2头牛吃12周,那么可供50÷10=5头牛吃多少周呢?
所以,每周草会长(9/2×12-6×6)÷(12-6)=3份,
原有草(6-3)×6=18份,
那么就够5头牛吃18÷(5-3)=9周