【#小学奥数# 导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。以下是©文档大全网整理的《小学五年级奥数牛吃草问题练习题》相关资料,希望帮助到您。
1.小学五年级奥数牛吃草问题练习题
一水库原有存水量一定,河水每天均匀入库。5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。若要求6天抽干,需要多少台同样的抽水机?解:水库原有的水与20天流入水可供多少台抽水机抽1天?20×5=100(台)。
水库原有的水与15天流入的水可供多少台抽水机抽1天?6×15=90(台)。
每天流入的水可供多少台抽水机抽1天?
(100-90)÷(20-15)=2(台)。
原有的水可供多少台抽水机抽1天?
100-20×2=60(台)。
若6天抽完,共需抽水机多少台?
60÷6+2=12(台)。
答:若6天抽完,共需12台抽水机。
2.小学五年级奥数牛吃草问题练习题
1.一片牧草,每天生长的速度相同。现在这片牧草可供20头牛吃12天,或可供60只羊吃24天。如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃多少天?2.一个水池,池底有水流均匀涌出。若将满池水抽干,用10台水泵需2小时,用5台同样的水泵需7小时,现要在半小时内把满池水抽干,至少要这样的水泵多少台?
3.有一片草地,可供8只羊吃20天,或供14只羊吃10天。假设草的每天生长速度不变。现有羊若干只,吃了4天后又增加了6只,这样又吃了2天便将草吃完,问有羊多少只?
4.12头牛4周吃完6公顷的牧草,20头牛6周吃完12公顷的牧草。假设每公顷原有草量相等,草的生长速度不变。问多少头牛8周吃完16公顷的牧草?
3.小学五年级奥数牛吃草问题练习题
牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天?【解析】
设1头牛一天吃的草为1份。那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20-10=10(天),
说明牧场10天长草50份,1天长草5份。也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。由此得出,牧场上原有草
(10-5)×20=100(份)或(15-5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
4.小学五年级奥数牛吃草问题练习题
一块草地,每天生长的速度相同。现在这片牧草可供16头牛吃20天,或者供80只羊吃12天。如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?分析由于1头牛每天的吃草量等于4只羊每天的吃草量,故60只羊每天的吃草量和15头牛每天吃草量相等,80只羊每天吃草量与20头牛每天吃草量相等。
解:60只羊每天吃草量相当多少头牛每天的吃草量?
60÷4=15(头)。
草地原有草量与20天新生长草量可供多少头牛吃一天?
16×20=320(头)。
80只羊12天的吃草量供多少头牛吃一天?
(80÷4)×12=240(头)。
每天新生长的草够多少头牛吃一天?
(320-240)÷(20-12)=10(头)。
原有草量够多少头牛吃一天?
320-(20×10)=120(头)。
原有草量可供10头牛与60只羊吃几天?
120÷(60÷4+10-10)=8(天)。
答:这块草场可供10头牛和60只羊吃8天。
5.小学五年级奥数牛吃草问题练习题
有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。一般方法:先假设1头牛1天所吃的牧草为1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162(这162包括牧场原有的草和6天新长的草。)
(2)23头牛9天所吃的牧草为:23×9=207(这207包括牧场原有的草和9天新长的草。)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽
公式解法:
(1)草的生长速度=(207-162)÷(9-6)=15
(2)牧场上原有草=(27-15)×6=72
再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。
方程解答:
设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有27×6-6x=23×9-9x
解出x=15份
再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:27×6-6×15=23×9-9×15=(21-15)x
解出x=12(天)
所以养21头牛。12天可以吃完所有的草。
小学五年级奥数牛吃草问题练习题.doc正在阅读:
小学五年级奥数牛吃草问题练习题04-22
2019高一语文下学期期末考试题11-11
2016年10月自学考试古代文学史(一)模拟试题及答案(7)03-06
2020河南漯河市县区教育系统招聘教师公告【541人】11-28
2016年安徽造价工程师考点设置03-27
2021年西藏法考客观题考试成绩查询时间、方式及入口【10月25日起】09-02
2016年下半年国家心理咨询师三级考试高频考点(2)02-09
我的理想初一优秀作文800字:我的理想初中优秀作文800字11-12
2016年8月21日托福写作范文,2016年8月21日托福写作机经02-21