【#高一# 导语】人生要敢于理解挑战,经受得起挑战的人才能够领悟人生非凡的真谛,才能够实现自我无限的超越,才能够创造魅力永恒的价值。以下是©文档大全网高一频道为你整理的《人教版高一年级数学必修一教案》,希望你不负时光,努力向前,加油!
【一】
一、教材分析
1.教学内容
本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
2.教材的地位和作用
函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
3.教材的重点﹑难点﹑关键
教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念.
教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。
教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程.
4.学情分析
高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强.
二、目标分析
(一)知识目标:
1.知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。
2.能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。
3.情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知*。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。
(二)过程与方法
培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。
三、教法与学法
1.教学方法
在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。
2.学习方法
自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。
四、过程分析
本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。
(一)问题情景:
为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知*,为学习函数的单调性做好铺垫。(祥见课件)
新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。
(二)函数单调性的定义引入
1.几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题:
问题1、观察下列函数图象,从左向右看图象的变化趋势?
问题2:你能明确说出“图象呈上升趋势”的意思吗?
通过学生的交流、探讨、总结,得到单调性的“通俗定义”:
从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?
通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。
设计意图:通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。通过学生已学过的一次y=2x+4,,的图象的动态形式形象地反映出x、y间的变化关系,使学生对函数单调性有感性认识。从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。
(三)增函数、减函数的定义
在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。
定义中的“当x1x2时,都有f(x1)
注意:(1)函数的单调性也叫函数的增减性;
(2)注意区间上所取两点x1,x2的任意性;
(3)函数的单调性是对某个区间而言的,它是一个局部概念。
让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的概念。
设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。
(四)例题分析
在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。
2.例2.证明函数在区间(-∞,+∞)上是减函数。
在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。
变式一:函数f(x)=-3x+b在R上是减函数吗?为什么?
变式二:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。
变式三:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。
错误:实质上并没有证明,而是使用了所要证明的结论
例题设计意图:在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。例1是教材中例题,它的解决强化学生应用数形结合的思想方法解题的意识,进一步加深对概念的理解,同时也是依托具体问题,对单调区间这一概念的再认识;要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。例2是教材练习题改编,通过师生共同总结,得出使用定义证明的一般步骤:任取—作差(变形)—定号—下结论,通过例2的解决是学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性训练,从而提高学生的推理论证能力。例3是教材例2抽象出的数学问题。目的是进一步强化解题的规范性,提高逻辑推理能力,同时让学生学会一些常见的变形方法。
(五)巩固与探究
1.教材p36练习2,3
2.探究:二次函数的单调性有什么规律?
(几何画板演示,学生探究)本问题作为机动题。时间不允许时,就为课后思考题。
设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。
通过课堂练习加深学生对概念的理解,进一步熟悉证明或判断函数单调性的方法和步骤,达到巩固,消化新知的目的。同时强化解题步骤,形成并提高解题能力。对练习的思考,让学生学会反思、学会总结。
(六)回顾总结
通过师生互动,回顾本节课的概念、方法。本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。
设计意图:通过小结突出本节课的重点,并让学生对所学知识的结构有一个清晰的认识,学会一些解决问题的思想与方法,体会数学的和谐美。
(七)课外作业
1.教材p43习题1.3A组1(单调区间),2(证明单调性);
2.判断并证明函数在上的单调性。
3.数学日记:谈谈你本节课中的收获或者困惑,整理你认为本节课中的最重要的知识和方法。
设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展。作业3这种新型的作业形式是其很好的体现。
(七)板书设计(见ppt)
五、评价分析
有效的概念教学是建立在学生已有知识结构基础上,,因此在教学设计过程中注意了:第一.教要按照学的法子来教;第二在学生已有知识结构和新概念间寻找“最近发展区”;第三.强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,*引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。
【二】
一、设计思路
指导思想
数学是一门具有严密推理能力和抽象概括能力的学科。本课以发展学生思维能力为核心,以学生发展为本,从本班学生的实际出发,培养学生观察能力,探究能力和抽象概括能力。
教材分析
本节课是学生在已知函数概念,并且已经掌握了函数的一般性质和简单的对数运算性质的基础上,进一步研究一类具体函数——对数函数,深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步学习函数的知识打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
教学目标
1、知识目标:理解对数函数的定义,掌握对数函数的图像、性质及其简单应用
2、能力目标:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,以及从特殊到一般等学习数学的方法,并体会数形结合思想
3、情感目标:通过学习,学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。
教学重点
通过对对数函数图像的的探究,得出的对数函数图像及其性质,以及图像和性质的简单应用,是本节课的重点。
教学难点
1.底数a的变化对对数函数图像及性质的有较大的影响,是本节课的一大难点。
2.底数不同时,如何比较两个对数的大小是本节课的又一个难点
教学准备
1、认真研究教材,与同课头老师探讨教学思路,听取有经验老师的意见!。
2、精心制作PPT课件和几何画板课件辅助教学。
3、安排学生预习。
教学过程设计
一.复习提问,引入新课
师:对数函数的概念?定义域是什么?
生:一般地,函数,(a>0且a≠1)叫做对数函数,其中定义域是(0,+∞)
师:对数的运算性质有哪些?
生:(1);
(2);
(3).
(4)对数的换底公式
(,且,,且,)
设计思路:从对数函数概念以及对运算性质引出课题,寻找学习最近发展区,为后面研究对数函数的图象和性质埋下了伏笔。
二.性质探究
1.探究一:对数函数的图像
操作1:同指数函数一样,在学习了函数定义之后,我们要画函数的图象。
在同一坐标系内画出函数和的图象。
师:画函数都有哪些步骤呢?
生:列表、描点、连线。
(学生动手画图后,教师利用多媒体演示画图过程)
操作2:继续在同一坐标系中,画出下列函数图像
设计思路:通过描点法在同一坐标画出不同底数函数的图像,既有利于培养学生的动手能力,又有利于学生感知对数函数的图像的变化规律。
2.探究二
师:老师布置学习任务和组织学生探究:
请各小组根据同一坐标系中所画底数不同时对数函数的图像,归纳总结出对数函数具有哪些性质?最终请各小组派代表起来汇报本小组的探究结果。
生:各小组积极探讨,把发现的性质归纳总结,记录下来。其中重点包含(但不限于)如下内容:
v定义域与值域分别是什么
v当底数a变化时,对数函数图像如何变化?
v经过哪个定点?
vy=logax与y=图像有什么关系
v函数的单调性?
v函数的奇偶性?
v函数值何时取正值,何时取负值?
设计思路:小组探究,有利于培养学生合作意识和团队精神;开放式的探究,更有利于培养学生观察能力以及发现问题,提出问题能力。
三.成果展示
师:教师轮流要求各小组派代表展示本组所发现对数函数的所有性质,其它队员可以补充,并对学生的精彩回答加以肯定;如果发现了新问题,鼓励学生继续讨论。
生:
通过学生的观察、探究和发现,以及各组的成果展示,将对数函数的图像性质,归结总结如下(各性质尽可能由学生总结):
图
象
a>1
0<a<1
0
(1,0)
性
质
特
征
定义域
(0,+∞);
值域
R
渐近线
图象都在y轴的右方,以作为渐近线
定点
图象都经过(1,0)点,即x=1时,y=0
底数变化规律
在第一象限,图像从左向右,底数a增大
底数a逆时针增大
奇偶性
对数函数为非奇非偶函数
对称性
y=logax与y=log1/ax图像关于x轴对称
单调性
当a>1时,图象呈上升趋势,
为增函数
当0<a<1时,图像呈下降趋势,为减函数
正负性
当a>1时,若0<x<1,则y<0,若x>1,则y>0;
当0<a<1时,若0<x<1,
则y>0,若x>1,则y<0
师:通过几何画板软件,对部分性质进行验证。
设计思路:通过成果展示,培养学生的团队合作精神,以及抽象概括辐射能和口头表达能力!
探究三:判断下列各对数值的正负,有什么规律?
值为正的有:(1)(2)(3)(4)
值为负的有:(5)(6)(7)(8)
师:根据上述探究,请学生总结规律!
规律总结:设a,b∈(0,1)∪(1,+∞),则logab与0的大小规律是:
(1)当a,b同时大于1或同小于1时,logab>0;
(2)当a,b一个大于1另一个小于1时,logab<0。
设计思路:进一步激发学生的问题意识和探索精神,培养学生的概括能力。
四.性质应用
例1.求下列函数的定义域:
(1);(2);.
分析:此题主要利用对数函数的定义域(0,+∞)求解.
解:(1)由>0得,∴函数的定义域是;
(2)由得,∴函数的定义域是;
设计意图:加强学生对定义域的理解
例2:比较下列各组中两个数的大小:
(1);;
.
.
解:考查对数函数,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是.
考查对数函数,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是.
当时,在(0,+∞)上是增函数,于是;
当时,在(0,+∞)上是减函数,于是
练习1:比较下列各组对数的大小
(1)log27与log37;
(2)
(3)
(4)log3π与log20.8
解:(1)、(2)如图log27>log37,
(3)log67>log66=1
log76<log77=1
∴log67>log76
(4)log3π>log31=0
log20.8<log21=0
∴log3π>log20.
归纳总结:比较两个对数式的大小的方法
a)底数相同:可由对数函数的单调性直接进行判断.
b)底数不同,真数相同:可用不同底时图像的高低性判断.(也可用换底公式)
c)底数、真数都不相同:常借助1、0、-1等中间量进行比较
d)底数不确定时,必须讨论
e)灵活运用公式,将等价转化后再比较
设计意图:加强学生对函数的图像及性质的的理解,并渗透数形结合思想。
五.拓展提高
思考:在同一个坐标内分别作出下列函数图象
(1)y=2x和y=log2x(2)y=0.5x和y=log0.5x
师:从图象中你能发现两个函数的图象间有什么关系?
生:函数y=ax与y=logax图象关于y=x对称
师:推广,函数y=f(x)与反函数y=f-1(x)图象关于y=x对称
设计意图:拓展知识,进一步理解反函数的概念
六、课堂小结
1.正确理解对数函数的定义;
2.掌握对数函数的图象和性质;
3.能利用对数函数的性质解决有关问题。
4.比较两个对数式的大小关系的哪些方法。
人教版高一年级数学必修一教案.doc正在阅读:
人教版高一年级数学必修一电子课本新版-人教版高一年级数学必修一教案07-08
童话故事四年级06-19
2019学校宣传个人工作计划02-25
2019下半年陕西初级银行从业资格考试报名时间及入口(已开通)03-31
广告公司实习报告怎么写06-08
河南2020年考研现场确认时间及提醒02-04
湖南2018年9月计算机二级成绩公布时间08-02
快乐的春节英语日记01-11
二年级下册英语第六单元测试卷,二年级下册英语第六单元测试题12-25
2018年安徽中考历史试卷及详细答案,2018年山东东营中考历史试卷05-06
移民投资马来西亚房产的环境10-05