初三数学下册期末复习重点

时间:2022-11-13 11:41:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

#初三# 导语】学习是一架保持平衡的天平,一边是付出,一边是收获,少付出少收获,多付出多收获,不劳必定无获!要想取得理想的成绩,勤奋至关重要!只有勤奋学习,才能成就美好人生!勤奋出天才,这是一面永不褪色的旗帜,它永远激励我们不断追求、不断探索。有书好好读,有书赶快读,读书的时间不多。只要我们刻苦拼搏、一心向上,就一定能取得令人满意的成绩。下面是®文档大全网为您整理的《初三数学下册期末复习重点》,仅供大家参考。



1.初三数学下册期末复习重点


  相似多边形的性质

  相似多边形的性质:相似多边形的对应角相等,对应边的比相等。

  解读:(1)正确理解相似多边形的定义,明确“对应”关系。

  (2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性。

  相似三角形的概念

  对应角相等,对应边之比相等的三角形叫做相似三角形。

  解读:(1)相似三角形是相似多边形中的一种;

  (2)应结合相似多边形的性质来理解相似三角形;

  (3)相似三角形应满足形状一样,但大小可以不同;

  (4)相似用“∽”表示,读作“相似于”;

  (5)相似三角形的对应边之比叫做相似比。

2.初三数学下册期末复习重点


  相似三角的判定方法

  (1)定义:对应角相等,对应边成比例的两个三角形相似;

  (2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似。

  (3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。

  (4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

  (5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似。

  (6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似。

  相似三角形的性质

  (1)对应角相等,对应边的比相等;

  (2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;

  (3)相似三角形周长之比等于相似比;面积之比等于相似比的平方。

  (4)射影定理;

3.初三数学下册期末复习重点


  圆周角

  1、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)

  2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

  3、推论:

  1)在同圆或等圆中,相等的圆周角所对的弧相等。

  2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)

  4、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)

  补充:

  1、两条平行弦所夹的弧相等。

  2、圆的两条弦

  1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。

  2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

  3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

4.初三数学下册期末复习重点


  【二次函数的图像与性质】

  二次函数的概念:一般地,形如ax^2+bx+c=0的函数,叫做二次函数。

  这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数。

  二次函数图像与性质口诀

  二次函数抛物线,图象对称是关键;

  开口、顶点和交点,它们确定图象限;

  开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

  【二次函数的应用】

  在公路、桥梁、隧道、城市建设等很多方面都有抛物线型;生产和生活中,有很多“利润”、“用料最少”、“开支最节约”、“线路最短”、“面积”等问题,它们都有可能用到二次函数关系,用到二次函数的最值。

  那么解决这类问题的一般步骤是:

  第一步:设自变量;

  第二步:建立函数解析式;

  第三步:确定自变量取值范围;

  第四步:根据顶点坐标公式或配方法求出最值(在自变量的取值范围内)。

5.初三数学下册期末复习重点


  【函数的图像与一元二次方程】

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到;

  当h<0时,则向左平行移动|h|个单位得到;

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。这给画图象提供了方便。

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a);

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小;

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的两根.这两点间的距离AB=|x?-x?|

  当△=0.图象与x轴只有一个交点;

  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a;

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值;

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0);

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0);

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0);

本文来源:https://www.wddqw.com/SMhm.html