正弦定理的证明及外接圆圆心位置的探究 福建省武平县 英才教育 林清辉 364300 我们知道在一个三角形中,各边和它所对角的正弦的比相等,也就是: abc,这里各边长和所对角的正弦比值会相等,那会等于多少呢? sinAsinBsinCabc2R(其中R是外接圆的我们引入三角形的外接圆,可以证明其实sinAsinBsinCa2R) 半径)证明过程如下:(因为三边的证明过程相同,所以这里只证明sinA假设B,A,N是BC中点,PC⊥BA于P。 情况一:当B是锐角,A是钝角。 即点A在线段BP间时,因为A大于90°,我们可以判断出外接圆圆心O的位置是在BC直线不同于A的一侧,也就是图中BC的下方。(如果O与A在BC的同一侧,那∠BOC=2∠A>180°,显然∠BOC最多只有180°,矛盾,所以O在BC的下方)此时A1(360BOC) 2。 图一 a()NCa sinAsin2OCR2Raa所以2R asinA()2R情况二:当B、A都是锐角。因为∠A是锐角,所以外接圆圆心O在BC上方。如图二。 图二 1BOCNOC, 2a()NCasinAsinNOC2 OCR2Raa2R 所以sinA(a)2R此时A情况三,当∠B是锐角,∠A是直角,即点A与点P位置重合,此时O与N重合aaa2NC2R sinAsin90情况四,当∠B是直角,此时O在AC上,如图三,也可以得到a2R sinA 图三 情况五,∠B是钝角,∠A是锐角,如图四 图四 1BOCNOC 2a()NCasinAsinNOC2 OCR2Raa2R 所以sinA(a)2R此时A综上,在一个三角形中,各边和它所对的角的正弦值之比等于这个三角形外接圆的直径,即 abc2RsinAsinBsinC。 锐角三角形外接圆圆心的位置在三角心内,钝角三角形外接圆圆心在三角形外,直角三角心在直角所对的边上。 本文来源:https://www.wddqw.com/doc/0df2424183d049649a6658ad.html