高三学生如何快速提高数学成绩 1、做题时不要怕难题 很多高三学生的数学成绩提不上来,很大一部分原因就是他们对数学有畏惧心理。有的学生看到圆锥曲线和导数或是看到长一点、复杂一些的叙述就有了退却的心。而在考试中这部分的分数如果你不去努力,就永远不会挣到,所以第一个建议就是大胆的去做。 2、做题之后加强反思 学生一定要明确一点,就是在平常做题的时候,目的不是做题快慢,也不是得分多少,而是要明白题目的解题方法和思路。所以,要把自己做过的题目加以反思,总结一下自己的收获。要做到知识成片,问题成串。这样日久天长之后,就会构建起一个内容与方法的知识系统。 有的学生认为想要学好数学就要多做题。其实不然,的确应该适时的多做题,但却不能钻入题海,盲目堆题,这样在考试中也是很难会有作为的。所以要把提高数学当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,水平才能长进。 3、错题本怎么用 数学的错题本不是你错了就要去记录,它的使用方法是摘抄不是照抄不误。如果你只顾着去采集问题,就失去了理解和挑选题目的过程,笔记也是一样的原理,如果老师说什么就记什么,那么你这节课就等同于没听。真正有效率的人,是会把知识简化,把书本读薄的。 4、试卷要怎么做 高三学生提升数学成绩的一条重要途径就是做题,建议大家是做专题练习,就是如果你今天是练习选择题,那么你就刷选择题。做题也是有挑选的,可以优先挑选自己省的以及与自己省相似的卷子模拟,时间跨度最好选择以三年内的为准。 特殊与一般的思想 用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。 极限思想解题步骤 极限思想解决问题的一般步骤为: 1对于所求的未知量,先设法构思一个与它有关的变量; 2确认这变量通过无限过程的结果就是所求的未知量; 3构造函数数列并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。 分类讨论思想 我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。 1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是. 注:①当或时,直线垂直于轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:. 注:若是一直线的方程,则这条直线的方程是,但若则不是这条线. 附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线. 3. ⑴两条直线平行: ∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. 一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且 推论:如果两条直线的倾斜角为则∥. ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件 4. 直线的交角: ⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时. ⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有. 5. 过两直线的交点的直线系方程为参数,不包括在内 感谢您的阅读,祝您生活愉快。 本文来源:https://www.wddqw.com/doc/10db8ab4148884868762caaedd3383c4ba4cb4c1.html