浅谈数学中工程问题 一、基本概念理解。 工作量:完成工作的多少,可以是全部工作量,为了方便解题,一般用数“1”表示,也可以是部分工作量,常用分数表示。例如工程的一半可表示成1/2,工程的五分之一可表示成1/5。 常用的数量关系式1:小明一分钟能写15个汉字,请问五分钟他能写多少个汉字? 【解题关键点】工作量=工作效率×工作时间,15×5=75(个)。 常用的数量关系式2:做500个零件,平均每天做50个,几天可以做完? 【解题关键点】工作时间=工作量÷工作效率,500÷50=10(天)。 常用的数量关系式3:4小时做了100个零件,平均每小时做多少个零件? 【解题关键点】工作效率=工作量÷工作时间,,100÷4=25(个)。 常用的数量关系式4:甲一天能生产10个产品,乙一天能生产20个产品,问甲、乙一天一共生产多少个产品? 【解题关键点】总工作量=各份工作量之和,10+20=30(个)。 二、合作完工问题。 通过计算工效和,来算出工作时间。工效和为所有工作人员的效率之和。 工作总量÷工效和=工作时间 合作完工问题1:一项工程,由甲工程队单独做需20天完成,由乙工程队单独做需30天完成,两队合作需多少天完成? 分析:设总工作量为1,由甲工程队单独做需20天完成,由乙工程队单独做需30天完成,可知甲、乙的工作效率分别是1/20、1/30。 【解题关键点】工作总量÷工效和=工作时间,1 ÷(1/20+1/30)=12(天)。 合作完工问题2:甲乙两车运一堆货物。若甲单独运,则甲车运的次数比乙车少5次;如果两车何运,那么各运6次就能运完,甲车单独运完这堆货物需要多少次? 【解题关键点】设甲单独运需要X次,则乙单独需要X+5次,则甲、乙的工作效率分别为1/X 、1/(X+5)依题意有1/X + 1/(X+5)=1/6解得X=10 三、组合合作完工问题。 工效和-一方工效=剩下方工效 组合合作完工问题1:一项工程,甲、乙合做6天可以完成。甲独做18天可以完成,乙独做多少天可以完成? 【解题关键点】 把一项工程的工作总量看作“1”,甲、乙合做6天可以完成,甲、乙合做一天,完成这项工程的1/6,甲独做18天可以完成,甲做一天完成这项工程的1/18。把甲、乙工作效率之和,减去甲的工作效率1/18,就可得到乙的工作效率:1/6-1/18= 1/9工作总量“1”中包含了多少个乙的工作效率,就是乙独做这项工程的需要的时间。 1÷(1/6-1/18)=9(天) 组合合作完工问题2:甲、乙合作完成一项工作,由于配合得好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独需要11小时,那么乙单独做需要几小时? 【解题关键点】甲、乙合作的效率是1/6,甲单独做效率是1/11。合作时效率提高 1/10,因此甲合作时候的效率是(1+1/10)×1/11=1/10。那么乙合作时候的效率就是1/6-1/10=1/15。乙单独做的时候是合作时候的5/6,因此乙单独做效率是5/6× 1/15=1/18,即要做18小时。 四、合作+单干完工问题 将整个工程根据题意分段,并分别算出每个过程的参与工作的人的工效和,根据已知量 求未知量。 合作+单干完工问题:甲、乙、丙共同加工一批零件,前三天三人一起完成全部工作量的1/5,第四天丙没参加,甲、乙完成了全部工作量的1/18,第五天甲、丙没参加,乙完成了全部工作量的1/90,第六天起三人一起工作只到工作结束,问加工这批零件一共需要多少天完成? 【解题关键点】前五天一共完成了全部工作量的1/5 + 1/18 + 1/90 = 4/15,三人一起工作每天可完成全部工作量的1/5÷3 = 1/15,则还需(1-4/15)÷1/15=11,故一共需5+11=16(天)完成工作。 五、轮流工作完工问题 将整个工程分段,根据“工作时间=工作量÷工作效率”等相关公式按要求解答。 轮流工作完工问题1:一堆沙重480吨,用5辆载重相同的汽车运三次,完成了运输任务的25%,余下的沙由9辆相同的汽车来运,几次可以运完? 【解题关键点】 方法一:此题关键算出每辆汽车每次运多少。每辆每次运量=480×25%÷5÷3=8(吨),余下的运沙的次数=(480-480×25%)÷9÷8=5(次)。 方法二:由题意知25%的沙需要运5×3=15车,那么剩下75%的沙,则需要45车运完, 即9辆同样的汽车运需要45÷9=5(次)。 轮流工作完工问题2:加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成? 本文来源:https://www.wddqw.com/doc/36b0621b59eef8c75fbfb3de.html