初三数学知识点归纳大全 初三数学平行四边形的性质知识点归纳 知识点总结 1.定义:两组对边分别平行的四边形叫平行四边形 2.平行四边形的性质 (1)平行四边形的对边平行且相等; (2)平行四边形的邻角互补,对角相等; (3)平行四边形的对角线互相平分; 3.平行四边形的判定 平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分: 第一类:与四边形的对边有关 (1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形; 第二类:与四边形的对角有关 (4)两组对角分别相等的四边形是平行四边形; 第三类:与四边形的对角线有关 (5)对角线互相平分的四边形是平行四边形 初三数学垂直平分线的性质知识点归纳 垂直平分线 经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。 垂直平分线的性质 1.垂直平分线垂直且平分其所在线段。 2.垂直平分线上任意一点,到线段两端点的距离相等。 3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。 4.线段垂直平分线上的点和这条线段两个端点的距离相等 。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 5.三角形三条边的垂直平分线相交于一点,该点叫外心(circumcenter),并且这一点到三个顶点的距离相 等。(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。) 垂直平分线的逆定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明 通常来说,垂直平分线会与全等三角形来使用。 垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。 巧记方法:点到线段两端距离相等。 可以通过全等三角形证明。 垂直平分线的尺规作法 初三数学一次函数的图像知识点归纳 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 本文来源:https://www.wddqw.com/doc/42fa1d56497302768e9951e79b89680203d86b39.html