配方法(二)教学设计

时间:2022-05-13 05:29:32 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
第二章 一元二次方程

2.配方法(二)



一、学生知识状况分析

学生的知识技能基础:初二上学期,学生已经学习过开平方根的定义以及完全平方公式,在上节课学生初步学习了配方法解二次项系数为1的一元二次方程,这些为本节课学习解二次项系数不为1的方程打下较好的基础。

学生活动经验基础:上一课时,学生已经经历了二次项系数为1的方程的解的过程,已经体会到其中转化的思想方法,这些都成为完成本课任务的活动经验基础。

二、教学任务分析

在课程安排上这节课的具体学习任务:用配方法解二次项系数不为1一元二次方程以及利用一元二次方程解决实际问题。这节课内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”此,本节课的教学目标是:

①经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能; ②经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想;

③能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力.

三、教学过程分析

本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第


六环节:布置作业。

第一环节 复习回顾

活动内容:回顾配方法解一元二次方程的基本步骤。

活动目的:回顾配方法的基本步骤,为本节课研究二次项系数不为1的二次方程的解法打下基础。

实际效果:教学中为了便于学生回顾,可以通过举例的形式,帮助学生回顾

并整理步骤,例如,x2-6x-40=0 移项,得 x2-6x= 40

方程两边都加上32(一次项系数一半的平方),得 x2-6x+32=40+32 x-32=49 开平方,得 x-3 =±7

x-3=7x-3=-7 所以 x1=10,x2=-4

学生一般都能整理出配方法解方程的基本步骤:

通过对这个方程基本步骤地熟悉学生们顺畅的理清思路,掌握了每一步的理论依据,增强了解题的信心,达到预期的目的

配方法的两节课连贯性强,作为一种新的方法,学生在新授期间应多接触,熟练掌握基本的步骤,掌握每一步的原理,这样会增强学生对这个知识点的驾驭能力。一般的一元二次方程配方解法的步骤(移项,配方,开平方,求解)及注意事项。移项的目的是将二次项和一次项调整到等号的左边,常数项调整到右边;配方是将方程的两边添加一个常数项(一次项系数一半的平方)原理是根据公式(aba2abb进行的;开平方的原理是平方根的定义,需要注意一个正数有两个平方根,它们是互为相反数;求解的过程是解两个一元一次方程,要注意符号的变化。

2

2

2




第二环节:情境引入

活动内容:1.将下列各式填上适当的项,配成完全平方式口头回答. 1.x2+2x+________=(x+______)2 2.x2-4x+________=(x-______)2 3.x2+________+36=(x+______)2 4.x2+10x+________=(x+______)2 5. x2-x+________=(x-______)2

2.请同学们比较下列两个一元二次方程的联系与区别 1.x2+6x+8=0 2.3x2+18x+24=0

探讨方程2的应如何去解呢?

活动目的:通过对第一部分的五个口答练习题的训练,熟悉完全平方式的三项与平方形式的联系,第二部分的两个习题之间的区别是方程2的二次项系数为3不符合上节课解题的基本形式,联系是当方程两边同时除以3以后,这两个方程式同解方程。学生们作了方程的变形以后,对二次项系数不为1的方程的解法有了初步的感受和思路。

实际效果:学生对第一部分五个口答题的积极抢答,调动了各自的思维,进入了积极学习的状态;比较第二部分中两个方程系数之间的区别与联系,学生们发现二次项系数为1仅是方程中的一小部分,怎样将其它类型的方程转化成这类方程非常关键,这个比较也点明了转化的方向和思路,为后续解这个方程做好了充分的铺垫,学生解决它已是轻车熟路的事情。

第三环节:讲授新课 活动内容1:讲解例题 2 解方程3x2+8x-3=0 解:方程两边都除以3,得

8

x2x10

3


本文来源:https://www.wddqw.com/doc/554d4d2af211f18583d049649b6648d7c0c70840.html